Practice and Problem Solving

Practice by Example

Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of each function.

Example 1 (page 518)

1.
$$y = 2x^2 + 4$$

3.
$$y = x^2 - 8x - 9$$

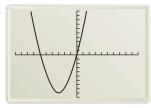
2.
$$f(x) = 2x^2 + 4x - 5$$

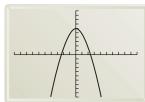
4.
$$v = 3x^2 - 9x + 5$$

Match each graph with its function.

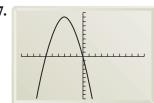
A.
$$y = x^2 - 6x$$

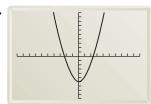
B.
$$y = x^2 + 6x$$

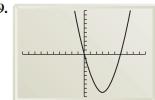

C.
$$y = -x^2 - 6x$$

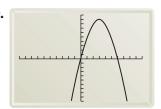

D.
$$y = -x^2 + 6x$$
 E. $y = -x^2 + 6$ **F.** $y = x^2 - 6$

$$\mathbf{E} \cdot y = -x^2 + 6$$


F.
$$y = x^2 - 6$$




7.


8.

9.

10.

Graph each function. Label the axis of symmetry and the vertex.

11.
$$f(x) = x^2 + 4x + 3$$

12.
$$y = 2x^2 - 6x$$

13.
$$y = -x^2 + 4x - 4$$

14.
$$y = 2x^2 + 3x + 1$$

Example 2 (page 519)

- **15. Gardening** Suppose you have 80 ft of fence to enclose a rectangular garden. The function $A = 40x - x^2$ gives you the area of the garden in square feet where *x* is the width in feet.
 - **a.** What width gives you the maximum gardening area?
 - **b.** What is the maximum area?
- **16.** A ball is thrown into the air with an upward velocity of 40 ft/s. Its height h in feet after t seconds is given by the function $h = -16t^2 + 40t + 6$.
 - a. In how many seconds does the ball reach its maximum height?
 - **b.** What is the ball's maximum height?

Example 3 (page 519) Graph each quadratic inequality.

17.
$$y > x^2$$

18.
$$f(x) < -x^2$$

18.
$$f(x) < -x^2$$
 19. $y \le x^2 + 3$

20.
$$v < -x^2 + 4$$

21.
$$y \ge -2x^2 + 6$$

20.
$$v < -x^2 + 4$$
 21. $v \ge -2x^2 + 6$ **22.** $f(x) > -x^2 + 4x - 4$

Apply Your Skills

Graph each function. Label the axis of symmetry and the vertex.

23.
$$y = x^2 - 9x + 3$$

23.
$$y = x^2 - 9x + 3$$
 24. $f(x) = -x^2 - 4x - 6$ **25.** $f(x) = x^2 - 2x + 1$

$$25. f(x) = x^2 - 2x + 1$$

26.
$$v = 2x^2 + x - 3$$

27.
$$y = x^2 + 3x + 2$$

26.
$$y = 2x^2 + x - 3$$
 27. $y = x^2 + 3x + 2$ **28.** $y = -x^2 + 8x - 5$

29.
$$y = \frac{1}{2}x^2 + 2x + 1$$

30.
$$y = \frac{1}{4}x^2 + 2x + 1$$

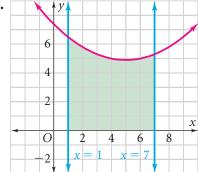
29.
$$y = \frac{1}{2}x^2 + 2x + 1$$
 30. $y = \frac{1}{4}x^2 + 2x + 1$ **31.** $y = -\frac{1}{4}x^2 + 2x - 3$

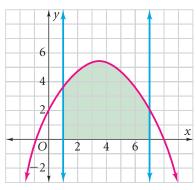
Open-Ended For Exercises 32–34, give an example of a quadratic function for each description.

- **32.** Its axis of symmetry is to the right of the *y*-axis.
- **33.** Its graph opens downward and has its vertex at (0,0).
- **34.** Its graph lies entirely above the x-axis.

Real-World (Connection

After turning a somersault, the diver followed a parabolic path.



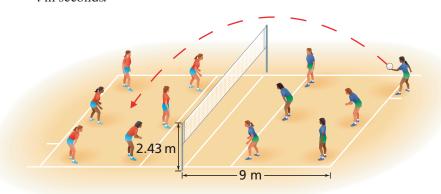

- **35.** Diving An athlete dives from the 3-meter springboard. Her altitude y, at horizontal distance x, can be approximated by the function $y = -2.2x^2 + 5.3x + 4$. Both the altitude and distance are in meters.
 - a. How far has she traveled horizontally when she reaches her maximum altitude? Round to the nearest tenth of a meter.
 - **b.** What is her maximum altitude? Round to the nearest tenth of a meter.
- **36.** Road Construction An archway over a road is cut out of rock. Its shape is modeled by the quadratic function $y = -0.1x^2 + 12$ for $y \ge 0$.
 - **a.** Write an inequality that describes the opening of the archway.
 - **b.** Graph the inequality.
 - c. Critical Thinking Can a camper 6 ft wide and 7 ft high fit under the arch without crossing the median line? Explain.
- 37. Business A small company markets a new toy. The function $S = -64p^2 + 1600p$ predicts, in dollars, the total sales S as a function of the price p of the toy.
 - a. What price will produce the highest total sales?
 - **b.** What is the maximum total sales predicted?

Estimation For each of the graphs below, estimate the area enclosed by the parabola, the x-axis, and the vertical lines x = 1 and x = 7. Follow the instructions below.

- Count the number of whole grid squares in the region.
- If half a square or more is included in the region, count it as one.
- If less than half a square is included in the region, do *not* count it.
- Add the counted squares to estimate the area.

38.

40. Critical Thinking Why is it important to consider the coefficient of the squared term when solving a real-world maximum or minimum problem?

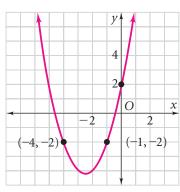


- 41. Writing Explain how changing the values of a, b, and c in a quadratic function affects the graph of the function.
- **42. Pets** Suppose you have 26 ft of fence and want to build a rectangular enclosure for rabbits. You want to make an enclosure with the greatest possible area.
 - **a.** Write an expression for the width of the rectangle in terms of the length.
 - **b.** Write an equation for the area of the rectangle in terms of the length.
 - **c.** Find the vertex of the parabola described by the equation in part (b).
 - **d.** Which dimensions give the rectangle the greatest area?

Challenge 43. Sports Suppose a volleyball player serves from 1 m behind the back line. If no other player touches the ball, it will land in bounds. The equation $h = -4.9t^2 + 3.82t + 1.7$ gives the ball's height h in meters in terms of time t in seconds.

- a. When will the ball be at its highest point? Round to the nearest tenth of a second.
- **b.** The ball will reach the net at t = 0.6 s. Will it clear the net? Explain.

44. Architecture An architect designs a monument for a new park. The solution of the following system of inequalities describes the shape of the monument. Make a graph of the monument.


$$y \ge -x^2 + 6$$
 $y \le -\frac{1}{2}x^2 + 8$ $y \ge 0$

Real-World (Connection

A standard tennis court is 78 ft long and 36 ft wide.

- **45. Sports** Suppose a tennis player hits a ball over the net. The ball leaves his racket 0.5 m above the ground. The equation $h = -4.9t^2 + 3.8t + 0.5$ gives the ball's height h in meters at time t in seconds.
 - a. When will the ball be at the highest point in its path? Round to the nearest tenth of a second.
 - **b. Critical Thinking** If you double the answer from part (a), will you find the amount of time the ball is in the air before it hits the court? Explain.
 - **46.** The parabola shown at the right is of the form $y = x^2 + bx + c$.
 - **a.** Use the graph to find the y-intercept.
 - **b.** Find the equation of the axis of symmetry.
 - **c.** Use the vertex formula $x = \frac{-b}{2a}$ to find b.
 - **d.** Write the equation of the parabola.
 - e. Test one point using the equation from part (d).
 - **f. Critical Thinking** Would this method work if the value of a were not known? Explain.

Standardized Test Prep

Multiple Choice

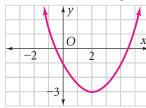
47. Which of the following are the coordinates of the vertex

of
$$y = x^2 - 2x - 1$$
?

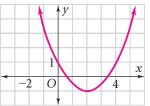
D.
$$(2, -3)$$

48. Which of the following parabolas has the greatest b-value?

F.
$$y = -x^2 - 2x$$


F.
$$y = -x^2 - 2x$$

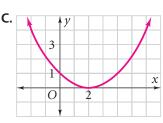
H. $y = -x^2 + 2x$

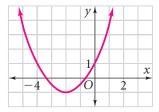

1.
$$y = -x^2 - 3x$$

G.
$$y = -x^2 - 3x$$

I. $y = -x^2 + 3x$

49. Which of the following is the graph of $y = 0.5x^2 - 2x + 1$?




Take It to the NET

Online lesson quiz at www.PHSchool.com ··· Web Code: aea-1002

Short Response

D.

50. An arrow is shot into the air. It follows a path given by the equation $y = -0.009x^2 + 0.3x + 4.5$, where x and y are in feet. Find its maximum

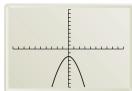
height. Show your work.

Mixed Review

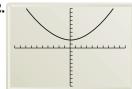
Lesson 10-1 Match each graph with its function.

A.
$$y = \frac{1}{8}x^2 + 2$$

B.
$$y = \frac{1}{2}x^2 + 2$$

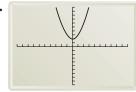

$$C. y = -x^2 - 2$$

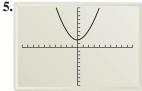
D.
$$y = x^2 + 2$$


E.
$$y = -x^2 + 2$$

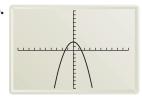
C.
$$y = -x^2 - 2$$

F. $y = -\frac{1}{2}x^2 - 2$


2.



53.



54.

56.

Lesson 9-3 Find each product.

57.
$$(c + 4)(c - 9)$$

58.
$$(2x - 5)(x + 6)$$
 59. $(4t + 1)(5t + 3)$

59.
$$(4t+1)(5t+3)$$

60.
$$(7n^2-2)(3n^2-8)$$

60.
$$(7n^2-2)(3n^2-8)$$
 61. $(a+5)(2a^2-a+4)$ **62.** $(3r^2+6r-7)(2r-1)$

62.
$$(3r^2 + 6r - 7)(2r - 1)$$