Chapter 9 - Factoring!!!!!

9-1 Factors and GCF's

- Find Prime factors of Integers & Monomials
- Find GCF's of Integers & Monomials

Do you remember Factor Trees?!? Find the Prime Factors of 18.

Prime	 	
Examples:		
Composite		
Examples:		

Ex 1) Factor each number. Then classify as prime or composite.

22 31 36

Ex 2) Find the $\underline{\text{Prime Factorization}}$ of the following numbers.

90 84 -132 Method 1

Method 2

^{*} A Negative Number is factored completely when it is expressed as the product of -1 and prime numbers.

A monomial is <u>iFactored Form</u> when it expressed as the product of prime numbers and variables and no variable has an exponent greater than 1.

Ex 3) Factor each monomial completely.

 $18 x^3 y^3$

-26rst 2

 $12a^2b^3$

GCF - Greatest Common Factor

Two or more numbers may have some common prime factors.

- GCF of two or more integers- Product of Prime Factors common to the Integers
- GCF of two or more monomials- Product of their common factors when each monomial in factored form.
- Relatively Prime GCF =1

Ex 4)Find the GCF of each set of monomials.

15 and 16

 $36x^2y$ and $54xy^2z$