## 9-2 Factoring using Distributive Property

- Factor polynomials using Distributive Property
- Solve quadratic equations of the form ax  $^{2}$ + bx = 0
  - \* See p. 481 Baseball Problem

**Distributive Property** 

$$\frac{2a(6a + 8) = 2a(6a) + 2a(8)}{= 12a^2 + 16a}$$

**Reverse Distibutive Property** 

$$12a^2 + 16 =$$

Factoring a polynomial means to find its COMPLETELY factored form.

Ex 1) Use the Distributive Property to factor each polynomial.

a) 
$$15x + 25x^2 =$$

Divide by GCF!

b) 
$$12xy + 24xy^2 + 30x^2y^2 =$$

<u>Factor by Grouping</u>- used to factor some polynomials having four or more terms. Pairs of terms are groupeed together and factored. The *Distributive Property* is then applied a <u>second</u> time to factor a *common binomial*.

Ex) Factor 
$$2xy + 7x - 2y - 7$$

$$4ab + 8b + 3a + 6$$

Additive Inverses - recognizing binomials that are additive inverses is helpful when factoring. For example: (7 - y) and (y - 7) are additive inverses.

Rewrite 
$$(7 - y)$$
 as  $-1(y - 7)$ 

$$15a - 3ab + 4b - 20$$

Factor by Grouping

- Four or more terms
- Terms with common factors can be grouped
- The two common factos are identical or are additve inverses of each other.

$$ax + bx + ay + by = x(a+b)+y(a+b)$$
  
=  $(a+b)(x+y)$ 

## **Solve Equations by Factoring**

$$6(0) =$$

$$0(-3)=$$

$$(5-5)(0)=$$

$$-2(-3+3)=$$

## **Zero Product Property**

- If the product of two factors is 0, then at least one of the factors is 0!!!!
- For any real numbers a and b, if ab = 0, then a = 0, b = 0 or both a and b equal 0.

$$(x - 2)(4x - 1) = 0$$

$$(x - 5)(3x + 4) = 0$$

## Rewrite equations so that one side equals 0!

$$4y = 12y^2$$

$$x = 7x^2$$