Laws of Exponents

Identification of Parts:

 a^b

a is the base and b is an exponent

THEOREM 1 Laws of Exponents (b>0)

	Rule	Example
Exponent zero	$b^0 = 1$	
Products	$b^x b^y = b^{x+y}$	$2^5 \cdot 2^3 = 2^{5+3} = 2^8$
Quotients	$\frac{b^x}{b^y} = b^{x-y}$	$\frac{4^7}{4^2} = 4^{7-2} = 4^5$
Negative exponents	$b^{-x} = \frac{1}{b^x}$	$3^{-4} = \frac{1}{3^4} = \frac{1}{81}$
Power to a power	$(b^x)^y = b^{xy}$	$(3^2)^4 = 3^{2(4)} = 3^8$
Roots	$b^{1/n} = \sqrt[n]{b}$	$5^{1/2} = \sqrt{5}$

Problems:

1)
$$2m^2 \cdot 2m^3$$

2)
$$m^4 \cdot 2m^{-3}$$

3)
$$4r^{-3} \cdot 2r^2$$

4)
$$4n^4 \cdot 2n^{-3}$$

5)
$$2k^4 \cdot 4k$$

6)
$$2x^3y^{-3} \cdot 2x^{-1}y^3$$

7)
$$2y^2 \cdot 3x$$

8)
$$4v^{3} \cdot vu^{2}$$

9)
$$4a^3b^2 \cdot 3a^{-4}b^{-3}$$

10) $x^2y^{-4} \cdot x^3y^2$

11)
$$\left(x^2\right)^0$$

12) $(2x^2)^{-4}$

13)
$$\left(4r^0\right)^4$$

14) $\left(4a^3\right)^2$

15)
$$(3k^4)^4$$

16) $(4xy)^{-1}$

17)
$$(2b^4)^{-1}$$

18) $(x^2y^{-1})^2$

19)
$$\left(2x^4y^{-3}\right)^{-1}$$

20) $(3m)^{-2}$

21)
$$\frac{r^2}{2r^3}$$

22) $\frac{x^{-1}}{4x^4}$

23)
$$\frac{3n^4}{3n^3}$$

24) $\frac{m^4}{2m^4}$

25)
$$\frac{3m^{-4}}{m^3}$$

$$26) \; \frac{2x^4y^{-4}z^{-3}}{3x^2y^{-3}z^4}$$

$$27) \ \frac{4x^0y^{-2}z^3}{4x}$$

$$28) \ \frac{2h^3j^{-3}k^4}{3jk}$$

$$29) \ \frac{4m^4n^3p^3}{3m^2n^2p^4}$$

$$30) \ \frac{3x^3y^{-1}z^{-1}}{x^{-4}y^0z^0}$$

Solve each equation.

1)
$$4^{2x+3} = 1$$

2)
$$5^{3-2x} = 5^{-x}$$

3)
$$3^{1-2x} = 243$$

4)
$$3^{2a} = 3^{-a}$$

5)
$$4^{3x-2} = 1$$

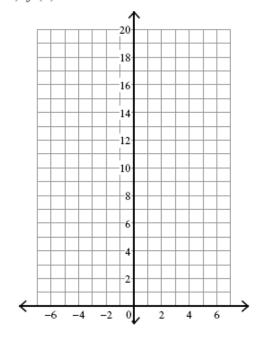
6)
$$4^{2p} = 4^{-2p-1}$$

7)
$$6^{-2a} = 6^{2-3a}$$

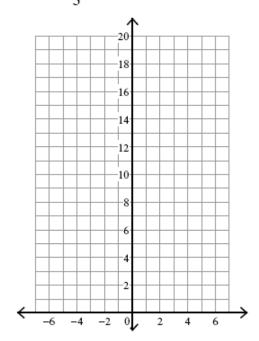
8)
$$2^{2x+2} = 2^{3x}$$

Evaluate each function at the given value.

1)
$$f(x) = \frac{1}{3} \cdot 6^x$$
 at $x = 2$


2)
$$f(n) = 10 \cdot 2^n$$
 at $n = 5$

3)
$$f(n) = 10 \cdot 2^n$$
 at $n = -2$


4)
$$g(x) = \frac{1}{5} \cdot \left(\frac{1}{3}\right)^x$$
 at $x = 3$

Sketch the graph of each function.

5)
$$f(x) = 5 \cdot 2^x$$

7)
$$f(x) = \frac{1}{3} \cdot 2^x$$

