Laws of Logarithms WS 2

The Change of Base Formula

Use a calculator to approximate each to the nearest thousandth.

1) log₃ 3.3

2) log₂ 30

3) log₄ 5

4) log₂ 2.1

5) log 3.55

6) log₆ 13

7) log₆ 40

8) log₄ 3.5

9) log₂ 2.9

10) log₆ 22

11) log₇ 8.7

12) log₃ 62

13) log₈ 4

14) ln 94

15) log₂ 8.7

16) log₉ 71

17) log₁₃ 194

18) ln 14.1

19) log₁₃ 12.9

20) log₅ 10.818

21) log₃ 189

22) log 16 194

23) log₅ 183

24) log 14 2.6

Expand each logarithm.

1) $\ln (x^6 y^3)$

2) $\log_8 (x \cdot y \cdot z^3)$

3) $\log_9 \left(\frac{3^3}{7}\right)^4$

4) $\log_7 \left(\frac{x^3}{y}\right)^3$

5) $\log_{a} \left(a^{6}b^{5}\right)$

6) $\log_4 (6^3 \cdot 11^3)$

7) $\log_3 \left(\frac{u^3}{v}\right)^2$

8) $\ln \sqrt[3]{u \cdot v \cdot w}$

9) $\log_6 (3 \cdot 2 \cdot 5^6)$

10) $\log_4 (2 \cdot 11 \cdot 7^4)$

11) $\log_6 \left(c^5 \sqrt[3]{a} \right)$

12) $\ln \left(\frac{5^2}{2}\right)^5$

13) $\log_5 \left(\frac{x^3}{y}\right)^6$

14) $\log_4 \left(7^3 \sqrt[3]{2}\right)$

15) $\log_2 \left(u \cdot v \cdot w^2 \right)$

16) $\log_9 (12^3 \cdot 7)^6$

17) $\log_9 \left(c^5 \sqrt[3]{a} \right)$

18) $\log_{7} (x^5 \cdot y)^4$

Condense each expression to a single logarithm.

21)
$$2\log_6 u - 8\log_6 v$$

22)
$$8\log_5 a + 2\log_5 b$$

25)
$$2\log_5 z + \frac{\log_5 x}{2}$$

29)
$$3\log x - 5\log y$$

30)
$$6\log_6 10 - 24\log_6 3$$

31)
$$\ln z + \frac{\ln x}{3} + \frac{\ln y}{3}$$

32)
$$3\log_4 x + 9\log_4 y$$

33)
$$5\log_4 a - 6\log_4 b$$

34)
$$\log_9 z + \frac{\log_9 x}{2} + \frac{\log_9 y}{2}$$

35)
$$4\log_2 11 - 6\log_2 6$$

36)
$$\log_7 z + \frac{\log_7 x}{3} + \frac{\log_7 y}{3}$$

Rewrite each equation in exponential form.

41) $\log_{17} 289 = 2$

42) $\log_9 81 = 2$

43) $\log_{14} 196 = 2$

44) $\log_6 1 = 0$

45) $\log 100 = 2$

46) $\log_{32} \frac{1}{2} = -\frac{1}{5}$

47) $\log_6 \frac{1}{36} = -2$

48) $\log_{18} 324 = 2$

49) $\log_{27} \frac{1}{3} = -\frac{1}{3}$

50) $\log_2 16 = 4$

51) $\log_{64} 16 = \frac{2}{3}$

52) $\log_7 49 = 2$

53) $\log_{18} \frac{1}{324} = -2$

54) $\log_{81} \frac{1}{3} = -\frac{1}{4}$

55) $\log_7 343 = 3$

56) $\log_{225} 15 = \frac{1}{2}$

57) $\log_{11} 121 = 2$

58) $\log_{14} 1 = 0$

59) $\log_3 27 = 3$

60) $\log_{324} 18 = \frac{1}{2}$

Rewrite each equation in logarithmic form.

62)
$$7^{-2} = \frac{1}{49}$$

63)
$$15^2 = 225$$

64)
$$121^{-\frac{1}{2}} = \frac{1}{11}$$

65)
$$3^4 = 81$$

66)
$$7^2 = 49$$

67)
$$4^3 = 64$$

68)
$$361^{\frac{1}{2}} = 19$$

69)
$$7^3 = 343$$

70)
$$11^{-2} = \frac{1}{121}$$

71)
$$3^3 = 27$$

72)
$$4^{-2} = \frac{1}{16}$$

73)
$$64^{\frac{1}{2}} = 8$$

75)
$$16^2 = 256$$

76)
$$8^2 = 64$$

77)
$$19^2 = 361$$

78)
$$225^{\frac{1}{2}} = 15$$

79)
$$12^{-2} = \frac{1}{144}$$

$$80) \ 144^{\frac{1}{2}} = 12$$

Solve each equation.

81)
$$\log_5 26 = \log_5 p$$

82)
$$\log_{20} (8-2x) = \log_{20} (-3x+10)$$

83)
$$\log_3(-4x + 7) = \log_3 2x$$

84)
$$\log_4(x+6) = \log_4(3x-6)$$

85)
$$\log_4 (-4x + 2) = \log_4 (-5x - 4)$$

86)
$$\log_9 3m = \log_9 (2m + 3)$$