Distance Formula and Concept

Distance formula: Distance between (x_1, y_1) and (x_2, y_2)

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Distance concept: Length of the line segment connecting those two points

Another form of Pythagorean theorem

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(4-(-7))^2 + (5-(-1))^2}$

Pythagorean:

$$d^2 = (11)^2 + (6)^2$$

= 121 + 36

$$= \sqrt{(11)^2 + (6)^2}$$

= $\sqrt{121 + 36}$ = $\sqrt{157}$ = 12.53

$$d = \sqrt{157}$$

= 12.53

Common problems: a) Given two points find the distance between them

- b) Use distance formula to find length of geometric item
 - 1) Length of radius or diameter
 - 2) Length of a side of a polygon

Typical SOL Distance Problems

The distance between the points

A V17

п 13

C 17

D 169

SSM:

Distance formula

- *plot points on graph paper
- *measure distance with
- scratch paper
- · use graph paper to
- estimate distance

Answers A & D wrong Parallelogram ABCD is placed on a coordinate grid as shown.

Pythagorean Theorem 5² + 12² = AC² 25 + 144 = AC² 169 = AC²

13 = AC

 $\sqrt{(-2-3)^2 + (-4-8)^2}$ $\sqrt{(-5)^2 + (-12)^2}$ $\sqrt{(25+144)}$ $\sqrt{169} = 13$

What is the approximate length of diagonal \overline{AC} ?

A 3.0 units

A 3.0 units B 5.4 units

C 9.0 units D 10.6 units $\sqrt{(-2-3)^2+(2-0)^2}$

V(-5)2 + 22 = V29

distance formula: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

· measure AC on scratch paper

· lay out on graph and estimate

the distance

Note: as other material is presented more types of distance problems will appear, but the concept is still the same.

Find the distance between the points

3)

4)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-1-2)^2 + (2-(-4))^2}$$

$$= \sqrt{(-3)^2 + (6)^2}$$

$$= \sqrt{9 + 36} = \sqrt{45} = 6.71$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(12 - (-3))^2 + (12 - 1)^2}$$

$$= \sqrt{(15)^2 + (11)^2}$$

$$= \sqrt{225 + 121} = \sqrt{346} = 18.60$$