Equations Review

The language of MATH is Equations!!!

Every step in solving a problem for an unknown variable should have a equation sign in it.

General concept: get the variable on one side and the numbers on the other side.

<u>Properties of Equality</u> (commonly used to solve problems)

Property	Result	Example
Distributive	Removes parentheses	$3(x + 2) = 3x + 3 \times 2$ = $3x + 6$
Addition	Adds same value to both sides	3x - 6 = 21 +6 = +6 3x = 27
Subtraction	Subtracts same value from both sides	4x + 7 = 23 -7 = -7 4x = 16
Multiplication	Multiplies both sides by the same value	$\frac{1}{2} x = 8$ $2(\frac{1}{2} x = 8)$ x = 16
Division	Divides both sides by the same value	4x = 16 $4x = 16$ 4 $x = 4$
Before you can use the properties of equality (except for distribution), we may need to combine like terms (CLT):		
CLT	Group variables and numbers on each side of equation together	3x - 9 + 2x - 8 = 23 5x - 17 = 23

Find the unknown variable usually involves application of several of the properties of above to get the solution.

Common mistakes:

Combine variables and numbers

Not using the opposite to eliminate a term:

add to remove negative;

subtract to remove positive;

divide to remove the coefficient in front of the variable)

Equation Review

Basic Concept:

We want to work the equation by canceling out things on both sides (by using the properties of equality) until we get it into the final form:

variable = number (our final answer!!)

Example:

$$1/2$$
 $x^2 + 3x - 9 = 3x - 1$ Original Equation $2(1/2 x^2 + 3x - 9 = 3x - 1)$ Get rid of fraction (×2 both sides) $x^2 + 6x - 18 = 6x - 2$ Result $-6x$ Subtract 6x from both sides x^2 $-18 = -2$ Result $-18 + 18$ Add 18 to both sides x^2 Result $-18 + 18$ Re

Properties of Equality:

We can add the same thing to both sides of the "=" sign: (x below)

 $2x^2 = 8$ $2x^2 - x = 8 - x$ \Rightarrow $2x^2 - x + x = 8 - x + x <math>\Rightarrow$

We can subtract the same thing from both side of the "=" sign: (3x below)

 $5x^2 + 3x = 5 + 3x$ \Rightarrow $5x^2 + 3x - 3x = 5 + 3x - 3x$ \Rightarrow $5x^2 = 5$

We can multiply both sides of the "=" sign by the same thing: (2 below)

 \Rightarrow 2×($\frac{1}{2}$ x + 5 = 9) \Rightarrow x + 10 = 18 $\frac{1}{2} \times 5 = 9$

We can divide both sides of the "=" sign by the same thing: (12x below)

 $12x^2 + 24x = 48x$ \rightarrow $(12x^2 + 24x = 48x) <math>\div 2x$ \rightarrow x + 2 = 4

Advanced Equality Concepts (seen later in AFDA):

We can take the square root of both sides of the "=" sign:

 $\sqrt{\mathbf{x}^2} = \sqrt{4}$ **→** $x^2 = 4$ **→** x = 2

We can take the logarithm of both sides of the "=" sign:

 \rightarrow log y = log (x²)

We can make both sides of the "=" sign an exponent of the same base:

y = x - 2 \Rightarrow $e^y = e^{(x-2)}$

We can "undo" all of the above as well:

We can square both sides of the "=" sign:

 $\sqrt{x} = 3$ x = 9

We can get rid of the logarithms on both sides of the "=" sign: [Caution]

 $\log 3 = \log x$ **→** 3 = x

We can get rid of the same base on both sides of the "=" sign: [Caution]

 $e^{2x-1} = e^x$ \rightarrow 2x - 1 = x