Modified and Animated By Chris Headlee Nov 2011

CHAPTER ONE SOL PROBLEMS

SSM: Super Second-grader Methods

SOL Problems; not Dynamic Variable Problems

10 In this figure, $m \angle 1 = (15x - 5)^{\circ}$ and $m \angle 2 = (10x + 35)^{\circ}$.

What is $m \angle 1$?

F 31°

G 65°

H 85°

J 115°

SSM:

• ∠1 is obtuse; only answer J works

Vertical angles are equal

$$15x - 5 = 10x + 35$$

 $5x - 5 = 35$
 $5x = 40$
 $x = 8$

Substitute: $m \angle 1 = 15(8) - 5 = 115$

41 If the coordinates of A are (1, 1) and the midpoint of \overline{AB} is (-2, 0), then the coordinates of B are —

- A (-0.5, 0.5)
- **B** (0.5, 0.5)
- C (-1, 0)
- D (-5, -1)

SSM:

plot points and see which make sense

Midpoint formula:

$$[(x1 + x2)/2, (y1 + y2)/2] = [(1 + x)/2, (1 + y)/2] = [-2, 0]$$

$$(1+x)/2 = -2$$
 \rightarrow $1+x=-4$ $(1+y)/2 = 0$ \rightarrow $1+y=0$ $y=-1$

1 In the figure shown, $m\angle 1 = (4x + 12)^{\circ}$ and $m\angle 2 = (6x + 8)^{\circ}$.

SSM:

- Corner of scratch paper tells us that $\angle 1+\angle 2=90^{\circ}$
- Our eyes tell us that $\angle 2 > \angle 1$, but not by much
- Answers A & B are possible, with B fitting better

What is $m \angle 1$?

A 20°

B 40°

C 50°

D 76°

Angle 1 and Angle 2 are complimentary

$$\angle 1$$
 + $\angle 2$ = 90°
 $(4x + 12) + (6x + 8) = 90$
 $10x + 20 = 90$
 $10x = 70$
 $x = 7$
 $x = 7$
 $x = 7$

6 Two lines intersect as shown.

What is the value of x?

- **F** 20
- **G** 40
- **H** 50
- **J** 60

Vertical Angles are equal

$$2x + 20 = 60$$
 $2x = 40$
 $x = 20$

- Two acute angles: assume equal
- Plug answers in for x

8 In the diagram, $m \angle 1 = (6x + 12)^{\circ}$ and $m \angle 2 = (9x - 4)^{\circ}$.

Which is closest to the value of x?

- **F** 5.3
- **G** 5.5
- **H** 11.5
- **J** 12.5

Vertical angles are equal

$$6x + 12 = 9x - 4$$

 $6x + 16 = 9x$
 $16 = 3x$
 $16/3 = x$

- Our eyes tell us that ∠1 and ∠2 are small acute angles
- Plug in answers: only F and G give small acute angles

39 P(-3,5), Q(1,7), R(8,1), and S(-4,-5) are connected to form a trapezoid.

Midpoint formula:

$$\begin{pmatrix} (-4+8), (-5+1) \\ ---- \\ 2 \end{pmatrix}$$

(2, -2)

What is the midpoint of \overline{SR} ?

- plot the answers (points)
- which is in the middle and on SR

41 Rectangle ABCD is placed on a grid as shown.

SSM:

- measure AC
- use graph to estimate

Which is *closest* to the length of diagonal \overline{AC} ?

Pythagorean Theorem

$$6^2 + 10^2 = AC^2$$

$$36 + 100 = AC^2$$

$$136 = AC^2$$

$$11.67 = AC$$

or

Distance formula

$$\sqrt{(-5-5)^2 + (3-(-3))^2}
\sqrt{(-10)^2 + (6)^2}
\sqrt{(100+36)}
\sqrt{136} = 11.67$$

44 A quadrilateral is placed on a grid as shown.

Midpoint formula:

$$(-3+2), (-6+5)$$
 2
 2

(-0.5, -0.5)

The apparent midpoint of \overline{BD} is —

- F (-0.5, -0.5)
- **G** (0.5, 3.5)
- **H** (1.5, 1.5)
- **J** (1.5, 2.5)

- plot the answers (points)
- draw BD
- which is in the middle and on BD

44 A line segment has an endpoint at (3,2). If the midpoint of the line segment is (6, -2), what are the coordinates of the point at the other end of the line segment?

F (4.5, 0)

G (0, 6)

H (9, 4)

J (9, ⁻6)

Midpoint formula:

$$(3 + x, 2 + y) = (12, -4)$$

 $(x, y) = (9, -6)$

SSM:

- plot given midpoint and endpoint of graph
- plot answer points on graph

answer area

43 Triangle ABC is placed on a grid as shown.

SSM:

- plot each answer on graph paper
- only answer C between AB

The apparent midpoint of \overline{AB} is —

midpoint formula:
$$((x_1+x_2)/2, (y_1+y_2)/2)$$

$$((3+6)/2, (3+6)/2) = (9/2, 9/2) = (4.5, 4.5)$$

4 What are the measures of two complementary angles if the difference of their measures is 18°?

F 36°, 54°

 $G 41^{\circ}, 49^{\circ}$

H 81°, 99°

J 86°, 94°

x + y = 90 complementary x - y = 18 difference of 18 2x = 108 (add line 1 and 2) x = 54

- complement \rightarrow adds to 90
- eliminates H and J

What is the midpoint of the segment joining (12, 2) and (-5, -7)?

- **A** (9, 17)
- **B** (5, -3)
- \mathbf{C} (8.5, 4.5)
- **D** (3.5, -2.5)

SSM:

- draw endpoints on graph paper
- plots answer points

• Midpoint ((12-5)/2, (2-7)/2) = (7/2, -5/2) = (3.5, -2.5)

1 The measures of some angles are given in the figure.

What is the value of x?

- A 65
- **B** 70
- \mathbf{C} 80
- **D** 85

SSM:

- Angle 2 is large acute
- Angle x is smaller than 80 but bigger than 65

Angle x is an acute angle Three angles sum to 180 missing angle is 30 (vertical angle)

$$80 + 30 = 110$$
 $180 - 110 = 70$

3 The Department of Transportation wants to extend the intersecting road across the highway, as indicated by the dotted line.

What should x be to ensure that the intersecting road and the new construction form a straight line?

- A 35°
- B 55°
- $c 105^{\circ}$
- **D** 125°

SSM:

- Angle x is an acute angle
- "vertical" angles!

Angle x is an acute angle

To form an "x" – two straight lines need to have a vertical angle

$$x = 55$$

40

SSM:

- plot each answer on graph paper
- only answer C between AB

The coordinates of the midpoint of \overline{AB} are —

$$\mathbf{F}$$
 (5, 3)

$$\mathbf{F} = (5, 3)$$

$$G$$
 (-5, 3)

$$\mathbf{H}$$
 (2, 5)

midpoint formula:
$$((x_1+x_2)/2, (y_1+y_2)/2)$$

$$((3+6)/2, (3+6)/2) = (9/2, 9/2) = (4.5, 4.5)$$

41 Parallelogram *ABCD* is placed on a coordinate grid as shown.

What is the approximate length of diagonal \overline{AC} ?

A 3.0 units

B 5.4 units

 \mathbf{c} 9.0 units

D 10.6 units

SSM:

- measure AC on scratch paper
- lay out on graph and estimate the distance

distance formula:

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

$$\sqrt{(-2-3)^2+(2-0)^2}$$

$$\sqrt{(-5)^2 + 2^2} = \sqrt{29}$$

1 A plumber bent a flexible joint into a 136° angle, as shown. He then attached another pipe so that A, B, and D lay on a straight line.

SSM:

- x is an acute angle
- 180 is a magic number
- $\cdot 180 136 = 44$

What is the value of x?

A 36

B 44

c 46

D 224

Straight line means linear pair (supplementary angles)

$$180 - 136 = 44$$

3 Which pair of angles is supplementary?

Supplementary means adds to 180

SSM:

- add all pairs
- which is "magic" number, 180

44

SSM:

- plot each answer on graph paper
- only answer C between AC

midpoint formula:

$$((x_1+x_2)/2, (y_1+y_2)/2)$$

$$((-2+3)/2, (2+0)/2) = (1/2, 2/2) = (1/2, 1)$$

What are the apparent coordinates of the midpoint of diagonal \overline{AC} ?

$$\mathbf{F} \quad \left(\frac{1}{2}, -1\right)$$

$$H\left(1,\frac{1}{2}\right)$$

$$G\left(\frac{1}{2},1\right)$$

45 The distance between the points

(-2, -4) and (3, 8) is —

- A $\sqrt{17}$
- B 13
- C = 17
- D 169

SSM:

- plot points on graph paper
- measure distance with scratch paper
- use graph paper to estimate distance
- Answers A & D wrong

Pythagorean Theorem

$$5^{2} + 12^{2} = AC^{2}$$

 $25 + 144 = AC^{2}$
 $169 = AC^{2}$
 $13 = AC$

$$\sqrt{(-2-3)^2 + (-4-8)^2}$$

$$\sqrt{(-5)^2 + (-12)^2}$$

$$\sqrt{(25+144)}$$

$$\sqrt{169} = 13$$

1

SSM:

- both are obtuse angles
- subtract from 180

What are the values of x, and y?

A
$$x = 91^{\circ}, y = 98^{\circ}$$

B
$$x = 91^{\circ}, y = 108^{\circ}$$

$$x = 101^{\circ}, y = 98^{\circ}$$

$$\mathbf{p} \ \ x = 101^{\circ}, \ y = 108^{\circ}$$

x and y form linear pairs with adjacent angles

$$180 - 82 = 98 = y$$

$$180 - 89 = 91 = x$$

2 Given: B, C, and D are collinear; m∠ACD = 85°

SSM:

• corner of scratch paper x is large acute angle – not quite 90

What value of x will ensure that A, C, and E are also collinear?

F 75

G 85

н 95

J 105

To ensure A, C and E are collinear x must be a vertical angle

$$x = 85$$

3 A guy wire for a pole for a tennis net makes an angle of 62° with the ground.

SSM:

- angle is small acute
- only answer A fits

What is the measure of the angle between the wire and the pole?

 28°

B 62°

C 90°

D 180°

3 angles of triangle add to 180

$$180 - 90 - 62 = 28$$

5 The measures of some angles are given in this figure.

SSM:

- use corner of scrap paper
- angle N is very large acute

What is the measure of $\angle N$?

- A 40°
- B 58°
- C 82°
- D 122°

angle MON = 40 (linear pair with 140)

angle NMO = 58 (vertical with 58)

angle N = 180 - 40 - 58 = 82

28 In the figure, the measure of $\angle CAD$ is twice the measure of $\angle CAB$.

SSM:

- angle CAB is acute so answer F is wrong
- angle CAD is obtuse double answers to see which is obtuse

What is the measure of $\angle CAB$?

H 45°

J 30°

Linear pair: sums to 180

$$x + 2x = 180$$

$$3x = 180$$

$$\mathbf{x} = \mathbf{60}$$

43 Which point is the greatest distance from the origin?

- C (3, 4)
- **D** (9, 2)

SSM:

- plot points on graph paper
- measure distance with scrap paper

Greatest distance from origin will result in the greatest sum of numbers squared!

A)
$$8^2 + 5^2 = 64 + 25 = 89$$

B)
$$9^2 + 1^2 = 81 + 1 = 82$$

C)
$$3^2 + 4^2 = 9 + 16 = 25$$

D)
$$9^2 + 2^2 = 81 + 4 = 85$$

89 is the largest so A is correct answer

Pythagorean Theorem or Distance formula can also be used for each point

44

SSM:

- plot each answer on graph paper
- only answer C between BC

Parallelogram ABCD is positioned on a coordinate plane with the coordinates as shown. N is the midpoint of \overline{BC} . What are the coordinates of N?

$$G$$
 (3.5, 2)

midpoint formula: $((x_1+x_2)/2, (y_1+y_2)/2)$

$$((5+7)/2, (1+4)/2) = (12/2, 5/2) = (6, 2.5)$$

1

SSM:

• angle 3 is large acute eliminates A and D

What is m∠3?

A 65°

в 75°

C 85°

D 90°

150 is an exterior angle

by Ext Angle Theorem
$$150 = 65 + \angle 3$$

 $85 = \angle 3$

3 Angle 1 is a complement of angle 2. If $m\angle 1 = (14x + 8)$ and $m\angle 2 = (8x - 6)$, what is the value of x and of $m\angle 1$?

A
$$x = 4$$
, m $\angle 1 = 26^{\circ}$
B $x = 4$, m $\angle 1 = 64^{\circ}$
C $x = 113.3$, m $\angle 1 = 121.3^{\circ}$
D $x = 113.3$, m $\angle 1 = 58.7^{\circ}$

SSM:

- plug in answers and check angle measurements
- only answer B works

Complements \rightarrow adds to 90

$$90 = (14x + 8) + (8x - 6)$$

= $22x + 2$
 $88 = 22x$

$$4 = x$$
 $m \angle 1 = 14(4) + 8 = 56 + 8 = 64$

- 43 The coordinates of the midpoint of \overline{AB} are (-2, 1), and the coordinates of A are (2, 3). What are the coordinates of B?
 - A (0, 2)
 - **B** (-1, 2)
 - C (-3, 4)
 - D (-6, -1)

SSM:

- plot the points given on graph paper
- remember B is an end point!

Midpoint formula:

$$\frac{(x+2)}{2}, \frac{(y+3)}{2} = (-2, 1) \implies \frac{1}{2}(x+2) = -2 \text{ and } \frac{1}{2}(y+3) = 1$$

$$x+2 = -4 \qquad y+3 = 2$$

$$x = -6 \qquad y = -1$$

2 A ladder is leaning against a house at an angle of 38° as shown in the diagram.

What is the measure of the angle, x, between the ladder and the ground?

F 38°

G 42°

н 52°

J 142°

3 angles in a triangle add to 180

$$x = 180 - 90 - 38 = 52$$

3 Lines AB and CD intersect at P. \overrightarrow{PR} is perpendicular to \overrightarrow{AB} , and

$$m \angle APD = 170^{\circ}$$
.

SSM:

- small acute angle
- C and D don't fit

What is the measure $\angle DPB$?

A 10°

B 20°

C 30°

D 40°

∠APD and ∠DPB form linear pair (adjacent angles)

$$180 - 170 = 10 = \angle DPB$$

SSM:

 both angles are acute eliminates J

Triangle ABC is a right triangle with the right angle at C. Which are possible measures for angle A and angle B?

F 48° and 50°

G 38° and 32°

H 52° and 38°

J 52° and 128°

Angle A and B must be complementary (since all 3 angles add to 180)

Only answer H does both angles add together to 90

2 A gardener rested his hoe against a shed. The hoe made a 50° angle with the ground as shown in the diagram below.

SSM:

• the angle z forms a linear pair with the 50° and is supplementary

Which represents the supplement to the 50° angle?

 \mathbf{F} w

Looking for a obtuse angle (130°)

 $\mathbf{G} \quad x$

 \mathbf{H} y

Rules out all but z or w (and $w = 140^{\circ}$)

J 2

SSM:

• angle x is acute and 35 + x = 90

An airplane leaves a runway heading due east then turns 35° to the right as shown in the figure. How much more will the airplane have to turn to be heading due south?

From East to South is a 90° angle

so
$$90 - 35 = 65$$