Segment Name	Point of Concurrency	Special Quality	Goes to Midpoint	Starts at Vertex
Perpendicular Bisector				
Angle Bisector				
Median				
Altitude				

Yes, No, Centroid, Circumcenter, Incenter, Orthocenter, equidistant from sides, equidistant from vertices, 2/3 distance from vertex, center of gravity, None

Match the segment with the corresponding part in picture.

Altitude BF

Angle Bisector CZ

Median JZ

Perpendicular Bisector DL

Segment	Picture	Problems	
		Angle = 90° Sides = each other	
		½ Angles = each other Total = 2 (1/2 angle)	
	• • • • • • • • • • • • • • • • • • • •	Sides = each other POC is 2/3 from vertex	
		Angle = 90° Sum of Δ ∠s = 180	

<u>Problems involving Perpendicular Bisectors</u> **AD** is a perpendicular bisector find x and z

Problems involving Angle Bisectors

BE is an angle bisector, find x and y

Problems involving Medians

AV, CW and UB are medians, find x, y, and z

Problems involving Altitudes

MS is an altitude, find y, and $m \angle 1$, $\angle 2$, $\angle 3$

Each figure shows a triangle with one or more of its medians.

1) Find FE if TE = 8

3) Find LJ if IJ = 6

5) Find ZQ if ZD = 6

11) Find x if GE = 3x + 5 and IE = x + 6

2) Find GF if TF = 6.3

4) Find NM if EM = 10

6) Find RK if DK = 3.4

12) Find *x* if TP = 2x + 1 and TQ = 3x - 5

Each figure shows a triangle with one of its angle bisectors.

1) $m \angle SUT = 34^{\circ}$. Find $m \angle 1$.

2) Find $m \angle SQR$ if $m \angle 2 = 13^{\circ}$.

Each figure shows a triangle with its three angle bisectors intersecting at point P.

3) PT = 3. Find PU.

4) Find PV if PW = 7.

Each figure shows a triangle with one of its angle bisectors.

13) Find *x* if $m \angle 2 = 4x + 5$ and $m \angle 1 = 5x - 2$.

14) Find *x* if $m \angle 2 = 1 + 28x$ and $m \angle XVW = 59x - 1$.

15) $m \angle 1 = 7x + 7$ and $m \angle VTU = 16x + 4$. Find $m \angle 1$.

16) Find $m \angle 2$ if $m \angle 2 = 7x + 5$ and $m \angle 1 = 9x - 5$.

