Modified and Animated By Chris Headlee
Dec 2011

CHAPTER 7 SOL PROBLEMS

SSM: Super Second-grader Methods

SOL Problems; not Dynamic Variable Problems

What is the value of x?

A 30

B 60

C 90

D 120

SSM:

- •x is acute so C and D are wrong.
- x is smaller acute (compared to other acute angle in Δ)

Regular hexagon: each angle is $[(n-2)\times180 = 720] \div 6 = 120$

120 is an exterior angle to triangle \rightarrow so 90 + x = 120 x = 30

26 Which figure has all sides of equal measure but not necessarily all angles of equal measure?

F Square

G Rectangle

H Rhombus

J Trapezoid

SSM:

- Look to find examples of each figure
- Rectangles and squares have 4 90° angles
- One side of a trapezoid is shorter or longer than the others

Squares and Rhombus are only quadrilaterals with four equal sides. Squares have all 90 angles.

- A -2
- B $-\frac{1}{2}$
- $\frac{1}{2}$
- **D** :

- •look at the opposite sides of a rectangle
- They are parallel!

Rectangles are parallelograms
Parallelograms opposite sides are parallel
parallel lines have the same slope

31 DEFG is a rhombus with $m \angle EFG = 28^{\circ}$.

What is $m \angle GDE$?

- A 14°
- B 28°
 - C 30°
- **D** 56°

SSM:

- compare ∠EFG to ∠GDE
- they are the same!

rhombus is a parallelogram opposite angles in parallelogram are equal

32 This figure is a traffic sign in the shape of a regular octagon.

SSM:

- x is an acute angle; eliminate H and J
- fold corner of paper in half to compare to 45 → equal!

What is the value of x ?

F 45

G 60

H 135

J 180

x is an exterior angle of an octagon (8 sides)

8x = 360 (sum of exterior angles = 360)

x = 45

33 A rectangular rug is 24 feet long and 10 feet wide. A rhombus design is formed inside the rug by joining the midpoints of each side of the rectangle. What is the length of each side of the rhombus?

- A 13 ft
- **B** 26 ft
- C 169 ft
- **D** 240 ft

SSM:

• Numbers in C and D don't fit inside the sides of the rectangle

Drawing a picture gives us a right-triangle in a corner → so Pythagorean Thrm applies midpoints divide rectangle sides in half!

$$5^{2} + 12^{2} = x^{2}$$

 $25 + 144 = x^{2}$
 $169 = x^{2}$
 $13 = x$

44 Parallelogram RSTV has coordinates R(0,0), S(2,4), T(6,0), and V(4,-4). Which ordered pair represents the intersection of the diagonals of this parallelogram? (The coordinate grid may be used to help answer this question.)

Midpoint formula:

Use to find each mid-point

SSM:

- plot the answers (points)
- see which point corresponds to intersection

24 Which of the following quadrilaterals is *not* a parallelogram?

- **F** Rectangle
- **G** Rhombus
- **H** Square
- J Trapezoid

SSM:

• draw the answer and see if it looks like a parallelogram

Remember Quadrilateral hierarchy:

Parallelogram
Rectangle Rhombus
Square

Trapezoid

• ∠C is medium obtuse answers A and B are wrong

In parallelogram ABCD, the measure of $\angle C$ is —

- A 82.5°
- **B** 97.5°
- C 120.0°
- **D** 130.0°

Opposite angles are congruent:

$$6x + 6 = 10x - 30$$

$$6 = 4x - 30$$

$$36 = 4x$$

$$9 = x$$

Consecutive angles are supplementary:

$$6(9) + 6 = 60$$
 $180 - 60 = 120$

- graph all answers (points)
- pick the one that makes it a square (4,7)

In the drawing above, what must be the coordinates of D to show ABCD is a square?

A (7, 7)

B (4, 7)

C (4, 5)

D (4, 4)

Square – all sides equal

up 3 and right 3 to get from B to C, so up 3 and right 3 to get from A to D (4, 7)

- start with n = 3 and S = 180
- add 1 to n and 180 to S
- repeat until n = 6

Given the polygon shown above, $m \angle A + m \angle F + m \angle E + m \angle D + m \angle C + m \angle B =$

F 360°

G 540°

H 720°

J 900°

Sum of
$$\angle$$
's = $(n-2) \times 180$

$$= (6-2) \times 180$$

30 Rectangle LMNO represents a park that has walking paths \overline{LN} and \overline{MO} that intersect at P. The length of \overline{PN} is 195 feet, and the length of \overline{MN} is 360 feet. What is the length of \overline{MO} , one of the walking paths?

F 150 ft

G 195 ft

H 360 ft

J 390 ft

SSM:

- measure PN
- compare with MP and PO
- add together

Rectangle's diagonals bisect each other and are equal

$$2 (PN) = MO$$

$$2(195) = 390 = MO$$

31 What is the measure of $\angle C$ in quadrilateral ABCD?

- A 46°
- **B** 56°
- C 86°
- **D** 96°

SSM:

- ∠C is middle acute so answers C and D are wrong
- compare with corner of paper folded in half (45° angle)

Sum of
$$\angle$$
's = 360

$$360 = 94 + 96 + 124 + x$$

$$360 = 314 + x$$

$$46 = x$$

33 When tiles are tessellated in a plane, what angle measure sum is required of the tiles surrounding a single point?

A 90°

B 180°

C 360°

D 720°

SSM:

• once around a point is 360

tessellation \rightarrow no gaps or overlaps $< 360^{\circ}$ or $360^{\circ} >$

- Use AC as a scaling reference
- **EC** is ½ **AC**

ABCD and DECF are both squares. If AC = 28 millimeters, what is the perimeter of DECF ?

F 14 mm

G 28 mm

H 42 mm

J 56 mm

Square's diagonals bisect each other

 $EC = \frac{1}{2}AC = 14$

EC is one of the 4 equal sides of DECF

 $P_{\rm DECF} = 4 \times 14 = 56$

25 The opposite sides of a window frame are congruent.

Which additional piece of information would verify that the frame is a rectangle?

A
$$\angle B \cong \angle D$$

$$\overline{B} \quad \overline{AC} \cong \overline{BD}$$

c
$$\overline{AC} \perp \overline{BD}$$

D
$$m \angle A + m \angle D = 180^{\circ}$$

Rectangle characteristic (often tested) is that the diagonals are equal

- Plot points on graph paper
- Draw lines connecting WY and XZ

In parallelogram WXYZ, what are the coordinates of the point of intersection of \overline{WY} and \overline{ZX} ?

J (3.5, 3.5)

Parallelogram's diagonals bisect each other:

So the midpoints of either WY or XZ is the intersection point

XZ midpoint is ((1+6)/2, (1+6)/2) or (3.5, 3.5)

27 The pentagon has the angle measures shown.

SSM:

- Angle x is a large acute angle
- Only answer that is acute is A

What is $m \angle x$?

82°

B 92°

C 108°

D 112°

Pentagon's interior angles sum to $540 = (n - 2) \times 180$

$$540 = x + 104 + 152 + 92 + 110$$

$$540 = x + 458$$

$$82 = x$$

28 For a regular polygon with three sides, each interior angle has a measure of —

F 180°

- **G** 60°
- **H** 45°
- **J** 30°

SSM:

- 3 sided polygon is a triangle
- regular all angles equal
- 180/3 = 60

Triangle's interior angles sum to $180 = (n - 2) \times 180$

$$180 = x + x + x$$

$$180 = 3x$$

$$60 = x$$

29 Each interior angle of a regular polygon measures 156°. How many sides does the polygon have?

A 13

B 14

C 15

D 16

SSM:

not much help

Interior angle + exterior angle = 180

$$156 + x = 180$$

$$x = 24$$

 $360 = n \times exterior angle$

$$360 = 24 \text{ n}$$

$$15 = n$$

31 If ABCD is a parallelogram and x = 5, what is $m \angle D$?

- **A** 100°
- B 120°
- C 140°
- **D** 160°

Use corner of scrap paper: Angle
 D is a medium obtuse angle
 eliminate answers A and D

Triangle's interior angles sum to $180 = \angle B + 4x + 8x$ where x = 5 $180 = \angle B + 4(5) + 8(5)$ $180 = \angle B + 60$

 $120 = \angle B$

Opposite angles equal in parallelogram so $\angle D = 120$

3 One exterior angle of a regular polygon measures 72°. What is the measure of one interior angle?

- A 18°
- B 108°
- C 360°
- **D** 540°

SSM:

- interior angle < 180
- •180 (72 + 108) is a "magic" #

Interior + Exterior =
$$180$$
 (linear pair)
 $180 - 72 = 108$

24 Gene's horse corral, labeled ABCD in the drawing, is shaped as a parallelogram and is adjacent to the shed, labeled ZAD.

If a gate, labeled CF, opens all the way to the corral fence, position labeled CG, through how many degrees does the gate swing?

F 40°

G 50°

H 130°

J 140°

Parallelograms: consecutive angles are supplementary

angle D forms a right angle with 40° angle, so angle D = 50 180 - 50 = 130

or

Parallelograms: opposite angles congruent

angle A is exterior angle to shed so angle A = 40 + 90 = 130 angle C must be 130

25 A diagonal of parallelogram DEFG forms angles with measures as shown.

SSM:

- angle is *large* acute
- only C applies

What is the measure of $\angle DEF$?

- A 44°
- **B** 56°
- C 80°
- D 100°

Parallelograms: diagonals form alternate interior angles

so angle D is 56 + 44 = 100

Parallelograms: consecutive angles supplementary

angle E = 180 - 100 = 80

26

SSM:

- plot each of the answer points **x** (-5, 2), (-4, 2), (-3, 2) and (0,2)
 - Use eyes to see which is correct

Quadrilateral *MNOP* is a parallelogram. The coordinates of three of its vertices are M(1,5), N(2,1), and O(-3,-2). If (x,2) are the coordinates of P, what is the value of x?

F -5

Parallelograms: opposite side parallel

G -4

so slope from MN must be same for PO

H −3

over (left) 1 and up 4 gets to (-4, 2)

J 0

27 Rectangular flowerbeds are built on each side of a fishpond in the shape of a regular octagon.

SSM:

- angle is acute
- answer D is wrong

What is the measure of the angle, x, between two consecutive flowerbeds?

- A 30°
- B 45°
- C 60°
- **D** 90°

Octagon: 360 / 8 = 45 (exterior angle measure)

Once around a point is 360° Interior angle + exterior angle = 180 two rectangle corners (90+90) = 180

so x must be the same as the exterior angle!

$$x = 45$$

A portion of a regular polygon is shown. The polygon has —

- F 15 sides
- G 16 sides
- H 18 sides
- J 20 sides

number of sides, n is obtain by:

29 Each interior angle of a regular polygon has a measure of 162°. The polygon has a total of —

- A 17 sides
- B 18 sides
- C 19 sides
- D 20 sides

SSM:

no real help

number of sides, n is obtain by:

- measure side with x in it
- compare with other sides
- must be equal to 20
- plug in answers to see which equals 20

What is the value of x in trapezoid ABCD?

- **A** 17
- **B** 13
- C 10
- **D** 7

side with 2x + 6 forms a rectangle opposite side of a rectangle are equal

$$2x + 6 = 20$$

$$2x = 14$$

$$x = 7$$

25 XYZW is a rectangle.

SSM:

• choice D does not <u>look</u> true

Which of the following is *not* necessarily true?

- $\mathbf{A} \quad XY = WZ$
- $\mathbf{B} \quad \overline{YZ} \perp \overline{WZ}$
- $\mathbf{C} \quad XZ = WY$
- \bigcirc XY = XW

Answer A (opposite sides are congruent; parallelogram)

Answer B (all angles are right angles; rectangle)

Answer C (diagonals are congruent; rectangle)

Answer D (only true if it is a square too!)

26 In the drawing, a *regular* polygon is partially covered by a rectangle.

SSM:

no real help

What is the number of sides of this polygon?

number of sides, n is obtain by:

If $\angle E \cong \angle C$, what is m $\angle E$?

- A 110°
- **B** 120°
- C 135°
- **D** 150°

SSM:

- Angle is obtuse
- Use scratch paper folded side
- angle is halfway beyond 90

sum of interior angles for a pentagon $3\times180 = 540$

$$3 \times 90 = 270$$

$$540 - 270 = 270 = 2\angle E$$

28 Three vertices of a parallelogram have coordinates (1, -4), (3, 8), and (5, 0).

What are the coordinates of the second-quadrant vertex?

$$H$$
 (1, -4)

 ${f J} (9, 4)$

SSM:

- Plot answer points
- Only F & G are Quadrant II

Opposite sides are parallel

Form triangle from (5,0) to (3,8) (left 2 and up 8)

Go left 2 and up 8 from (1,-4)

31 A regular pentagon and a regular hexagon share a side as shown in the figure.

SSM:

- Use scratch paper folded to check how close obtuse angle is to 135
- Slightly less, but pretty close

What is the measure of $\angle ABG$?

A 108°

B 120°

C 132°

D 144°

Interior angles for hexagon: 120 Interior angles for pentagon: 108

Once around a point is 360

360 - 228 = 132

32 In the rectangle PQRS, $m \angle 1 = 50^{\circ}$.

SSM:

- Angle 2 is middle acute
- Eliminate answers F and G

What is $m \angle 2$?

F 130°

G 85°

H 70°

J 65°

diagonals form isosceles triangles

angle 1 is 50

so angle 2 is $\frac{1}{2}$ (180 – 50) = $\frac{1}{2}$ (130) = 65

43

SSM:

- draw on graph paper
- must be on line y = x
- eliminates B and D

What is the point of intersection of \overline{BD} and \overline{AC} ?

A
$$(3, 3)$$

• Midpoint ((1+7)/2, (1+7)/2) = (8/2, 8/2) = (4,4)

4 The polygon shown is convex.

SSM:

not much help

The sum of its interior angle measures is —

F 900°

G 1,260°

н 1,620°

J 2,520°

n, number of sides, is 7

Sum of angles = $(n - 2) \times 180 = 5 \times 180 = 900$

7 Quadrilateral *QRST* is placed on a coordinate grid as shown.

What coordinates for S make QRST a parallelogram?

A (8, 6)

B (8, 10)

(12, 6)

D (12, 10)

SSM:

- y value is along 6 eliminates B and D
- x value is beyond 8 eliminates A

To get from Q to T: we go left 4 and up 6

To get from R to S: we do the same

24

In rectangle *ABCD*, which of the following pairs of segments are *not* necessarily congruent?

- **F** \overline{BD} and \overline{AC}
- $G \overline{AB}$ and \overline{CD}
- $\overline{\mathbf{H}}$ \overline{BC} and \overline{DC}
- **J** \overline{BE} and \overline{CE}

SSM:

- Look at the picture
- Use your scrap paper to measure the answers

Three answers are correct; one incorrect

Answer H does not fit the drawing

25 The town plaza in a certain town is a parallelogram. The town's planning committee has decided to build a fountain at the center of the plaza. This sketch shows the corner points when placed on a coordinate grid.

Which coordinates show where the fountain will be located?

 \mathbf{B} (0.5, 2)

 \mathbf{C} (3, 1.5)

D (1.5, 1)

SSM:

- plot all answer points
- see which one is "center"

parallelogram: diagonals bisect each other

midpoint formula:
$$((x_1+x_2)/2, (y_1+y_2)/2)$$

$$((-2+6)/2, (0+1)/2) = (4/2, \frac{1}{2})$$

$$=(2, 0.5)$$

26 Quadrilateral ABCD is a parallelogram.

SSM:

- Look at the picture
- Use your scrap paper to measure the answers F & G
- J is only one the makes sense

Which of the following must be true?

$$\mathbf{F} \quad \overline{AB} \cong \overline{AD}$$

$$G \quad \overline{AC} \cong \overline{BD}$$

H
$$\angle A \cong \angle D$$

$$\bigcup ZB \cong \angle D$$

Parallelogram characteristics:

Opposite angles are congruent

27 ABCD is a rhombus.

SSM:

- angle B (the whole thing) is obtuse
- use folded corner of scrap paper to compare to 135 -pretty close so either B or C

What is the measure of $\angle CBD$?

A 50°

B 60°

C 70°

D 75°

Angle B must be supplementary to angle A (from parallelogram's characteristics)

so angle B is 140

rhombus diagonals act as angle bisectors so they divide B into two 70° angles

28 If each interior angle of a regular polygon measures 120°, how many sides does the polygon have?

SSM:

not much help

- **F** 14
- G 12
- **H** 8
- **J** 6

interior angle + exterior angle = 180

$$120 + Ext = 180$$

exterior angle
$$= 60$$

360 / exterior angle = n (nr of sides)

$$360 / 60 = 6 = n$$

29 Which angle measure below is *not* a possible measure of an exterior angle of a regular polygon?

A 36°

B 40°

C 45°

D 54°

SSM:

not much help

Three answers are correct; one incorrect

divide answers into 360 to get number of sides and it must be a whole number

Answer D does not fit the drawing

30

SSM:

- Look at the picture
- angle C is acute eliminates all answers but F

In the figure, what is the measure of $\angle C$?

 \mathbf{G} 90°

H 100°

J 110°

All angles inside figure must add to 360 for quadrilateral

Angle A forms linear pair with 70° exterior angle \rightarrow so angle A = 110

$$360 - (90 + 90 + 110) =$$
angle $C = 70$

- angle C is small acute
- only answer F fits

Quadrilateral ABCD is a parallelogram. The measure of $\angle C$ is —

G 68°

н 112°

J 158°

parallelogram:

opposite angles are congruent

25 The vertices of parallelogram *ABCD* have coordinates A(1, 8), B(4, -2), and C(-2, -7).

What are the coordinates of D?

- A (-5, 3)
- B (-3, 5)
- c (2, 3)
- D (5, -3)

SSM:

- plot answer points on graph paper
- •D is in QII

Since opposite sides of a parallelogram are parallel:

B to A is left 3 and up 10 C to D must be left 3 and up 10

C to
$$D(-2-3, -7+10) = (-5, 3)$$

26 A desktop was made from the scrap of plywood shown by cutting (in a straight line) from C to E.

SSM:

• look at picture and see which answers make any sense

Which measurement would ensure that the desktop is rectangular?

$$F AE = EB$$

$$G AC = BD$$

$$H EC = CD$$

$$\int DE = CA$$

Key characteristic of a rectangle is that the diagonals are congruent!

27 Which of the following is *not* true about a parallelogram?

- A Any two opposite sides are congruent.
- B Any two opposite angles are congruent.
- C The diagonals bisect each other.
- D Any two consecutive angles are complementary.

SSM:

• 3 are true and 1 is false

complementary → two angles add to 90 consecutive angles of a parallelogram are supplementary

28

SSM:

- x is a large obtuse angle
- only answer G fits

What is the value of x in the pentagon above?

F 90°

G 155°

н 245°

J 335°

Sum of the interior angles of a pentagon, n = 5

$$(n-2) \times 180 = (3) \times 180 = 540$$

$$540 = 2 \times 90 + 100 + 105 + x$$

$$540 = 385 + x$$

$$155 = x$$

29

SSM:

- x is medium acute
- circle \rightarrow 360°
- 7 even pieces

Which is the *closest* to the measure of a central angle x in this regular polygon?

- A 40°
- в 45°
- C 50°
- D 60°

Once around the circle is 360°

$$360 \div 7 = 51.42$$

• angle is medium obtuse eliminates F and G

What is the measure of interior angle *ABC* of the regular polygon shown?

- F 225°
- G 180°
- н 160°
- J 144°

$$n = 10 \rightarrow decagon$$

$$360 \div 10 = 36$$
 (exterior angle)

$$180 - 36 = 144$$
 (interior angle)

4

SSM:

• x is an obtuse angle

In the diagram, $\triangle ABC$ and $\triangle RST$ are congruent equilateral triangles with corresponding sides parallel. What is the value of x?

x and the angle next to it toward S form a linear pair

F 90°

G 120°

н 135°

J 144°

the angle next to x is 60 (angle S is 60 from equilateral triangles and angle C is 60 for same reason; angle to the right of S in small triangle is an alternate interior angle to C and also equal to 60)

$$180 - 60 = 120 = x$$

24 In rhombus ABCD, AC = 30 inches and BD = 40 inches.

SSM:

- Use AC as a ruler to estimate CD
- CD < 30 (by a little)
- multiply estimate by 4 and H is only close answer

What is the perimeter of the rhombus?

F 25 in.

G 50 in.

H 100 in.

J 200 in.

Rhombus' diagonals are perpendicular and bisect each other

We get 4 right triangles that are pythagorean triples 15, 20, 25 (hypotenuse and outside segment of rhombus)

$$25 \times 4 = 100$$

25 ABCD is a rhombus.

SSM:

y-value has to be 4

What are the coordinates of vertex C?

- A (5, 4)
- B (6, 4)
- C (8, 4)
- D (4, 3) Rhombus' sides are equal so we have to add 5 to the x value of (3, 4)

26 The quadrilateral ABCD is a parallelogram.

Which of the following pieces of information would suffice to prove that *ABCD* is a rectangle?

$$G AB = AD$$

H m
$$\angle B$$
 = m $\angle D$

J $\angle A$ and $\angle D$ are supplementary

SSM:

• looking at the picture: answer G is wrong

Rectangle key characteristic is that the diagonals are equal

27 Three vertices of parallelogram *ABCD* have coordinates (-1, 4), (3, 8), and (5, 0).

SSM:

- graph the points
- answers A and B are QII

What are the coordinates of the other first-quadrant vertex?

D (9, 4)

Answers C and D are only Quadrant I points

plotting points shows answer D forms a parallelogram

- angle is medium acute eliminates A and possibly B
- use folded corner of scrap paper → its 45!

Figure ABCDEFGH is a regular octagon. What is the measure of ∠DCQ?

A 135°

в 60°

C 45°

D 30°

angle DCQ is an exterior angle

 $360 \div 8$ (number of sides) = exterior angle

45 = exterior angle

- Use corner of scrap paper
- Angle is obtuse eliminates F and G

Add two interior angles and subtract from 360 or

Add two exterior angles together

$$360 \div 6 = 60$$
 (ext \angle for hexagon)

$$360 \div 8 = 45$$
 (ext \angle for octagon)

$$60 + 45 = 105 = \angle PQR$$

The two adjacent figures are a regular hexagon and a regular octagon. What is the measure of $\angle PQR$?

- F 87.5°
- G 90°
- н 105°
- J 120°

• ∠BDC is medium acute eliminates F

In parallelogram *ABCD*, what is m∠*BDC*?

F 70°

G 45°

н 35°

J 25°

angle BDC and 25° angles are alternate interior and therefore equal

- 3x is a medium obtuse, but x + 25 is medium acute
- plug in answers and see which work (all of them do, but D)

Given quadrilateral *KLMN*, what is the value of x?

A 35

B 40

C 45

D 50

interior angles of a quadrilateral sum to 360

$$360 = 3x + 95 + 80 + (x + 25)$$

 $360 = 4x + 200$
 $160 = 4x$
 $40 = x$

26 Three vertices of a parallelogram have coordinates (0, 1), (3, 7), and (4, 4). You may want to plot the points on this grid.

SSM:

answers G and H are fourth quadrant points

What are the coordinates of the fourth-quadrant vertex?

F (-2, 1)

G (1, -2)

from (3,7) to (4,4) is down 3 and right 1

H (2, -1)

J (3, 3)

from (0, 1) down 3 and right 1 is (0+1, 1-3) = (1, -2)

• ∠CDQ is medium acute eliminates C and D

Figure *ABCDEF* is a regular hexagon. What is the measure of ∠*CDQ*?

- A 45°
- B 60°
- C 90°
- D 120°

exterior angle of hexagon is $360 \div 6 = 60^{\circ}$

28 In pentagon ABCDE, $m\angle E = m\angle C$ and $m\angle D = m\angle B$.

SSM:

• ∠A is a medium obtuse angle eliminates F and G

What is the measure of $\angle A$?

- F 410°
- G 335°
- н 155°
- J 130°

Sum of the interior angles of a pentagon = 540

$$540 = 100 + 100 + 105 + 105 + A$$

$$540 = 410 + A$$

$$130 = A$$

 24

SSM:

- y-coordinate of B must be 3
- only answer J has that

If ABCD is a parallelogram, what are the coordinates of B?

F (3, 7)

G (5, 5)

H (7, 8)

J (7, 3)

opposite sides of parallelogram are congruent

so
$$DC = 5$$
 and $AB = 5$

so B
$$(2+5,3+0)=(7,3)$$

- 25 Which of the following quadrilaterals could have diagonals that are congruent but do *not* bisect each other?
- SSM:
- not much help

- A A rhombus
- B A rectangle
- C A parallelogram
- D A trapezoid

Since parallelogram's diagonals bisect each other, anything that is a parallelogram will not work.

A rhombus and a rectangle are also parallelograms, so the trapezoid is the only answer left. An isosceles trapezoid has diagonals that are equal, but do not bisect each other.

26 Three vertices of a square have coordinates (5, 1), (2, -2), and (-1, 1). You may want to plot the points on this grid.

SSM:

- plot the points on graph paper and see which fits
- Answer G is one of the points already give

What are the coordinates of the fourth vertex?

F (-2, 2)

G(2, -2)

H (2, 4)

J (4, 2)

Since a square is a rectangle, the diagonals have to be equal.

Points (5, 1) and (-1, 1) form one diagonal

Point (2, -2) and (2, ?) must form the other diagonal

• x is the measure of an acute angle only answer F fits

A floor tile is designed with a regular pentagon in the center of the tile with its sides extended. What is the value of x?

F 72°

G 90°

н 110°

J 120°

x is the measure of the exterior angle of a pentagon

pentagon sides number 5

$$360 \div 5 = 72^{\circ}$$

29 Each exterior angle of a certain regular polygon measures 30°. How many sides does the polygon have?

SSM:

not much help

- A 6
- B 9
- C 10
- D 12

exterior angle = $360 \div n$ (number of sides) n × exterior angle = 360

$$n \times 30 = 360$$
$$n = 10$$

4

SSM:

- compare with folded corner of paper (45°)
- eliminates H and J

Regular pentagon *ABCDE* is formed by joining the midpoints of the sides of regular pentagon *PQRST*.

What is the measure of $\angle PAB$?

PT is a straight side so $\angle PAB + \angle BAE + \angle TAE = 180$ $\angle BAE = 108$ (regular pentagon) Assume $\angle PAB = \angle TAE$

$$2x + 108 = 180$$
$$2x = 72$$
$$x = 36$$

The polygon in the drawing is a regular octagon with O as its center. What is the value of x?

- A 30°
- B 45°
- C 60°
- **D** 72°

Once around a point is 360

eight parts of the circle

$$360 \div 8 = 45$$

SSM:

- compare with folded corner of piece of paper (45°)
- very, very close

- angle 1 is obtuse
- eliminates F and G

The design for a quilt piece is made up of 6 congruent parallelograms. What is the measure of $\angle 1$?

F 30°

G 60°

н 120°

J 150°

once around circle = 360so acute angle of parallelogram is $360 \div 6 = 60$ consecutive angles of parallelogram are supplementary so

$$\angle 1 = 180 - 60 = 120$$

25 QRST is a parallelogram.

SSM:

- Use points R and T to help figure S
- y-value is same as R
- •x-value is greater than T's

What are the coordinates of vertex S?

- \mathbf{A} (c, b)
- **B** (a + b, c)
- \mathbf{c} (c-a,b)
- (c + a, b)

opposite side in parallelogram are congruent QT is c long, so RS has to be c long if R starts at a the S must end at a+c

26

SSM:

- Use scrap paper to measure AC
- Use that measurement to estimate DE
- 2 DE = AC

Figure *ABCD* is a rectangle. \overline{AC} and \overline{BD} are diagonals. AC = 25 meters and $\overline{BC} = 15$ meters. What is the length of \overline{DE} ?

F 10 m

G 12.5 m

H 13.5 m

J 15 m

rectangle's diagonals bisect each other and are congruent

27 Some of the angle measures are given for one of the fish-shaped polygons in this tessellation.

SSM:

- x is small acute
- use folded corner of scrap paper
- x < 45

What is the value of x?

A 60°

B 45°

C 40°

D 30°

line up angle that forms linear pair with x its below the mouth of the fish \rightarrow 150

so
$$180 - 150 = 30 = x$$

28 The figure is a regular octagon with each side extended.

SSM:

- x is acute
- use folded corner of scrap paper
- x = 45

What is the value of x?

F 45°

G 60°

н 75°

J 135°

x is an exterior angle

since ext angle \times number of sides = 360

then $360 \div 8$ (number of sides) = 45 = x

28 The figure is a regular octagon with each side extended.

SSM:

- x is acute
- use folded corner of scrap paper
- x = 45

What is the value of x?

F 45°

G 60°

н 75°

J 135°

x is an exterior angle

since ext angle \times number of sides = 360

then $360 \div 8$ (number of sides) = 45 = x

29 In the drawing, a *regular* polygon is partially covered by the trapezoid.

SSM:

not much help

How many sides does the covered polygon have?

- A 4
- **B** 5
- C 6
- **D** 8

108 is an interior angle

since interior + exterior = 180, then ext = 72

then $360 \div 72 = (number of sides) = 5 = x$

Ideas for other problems

Given certain regular figures

Given the number of sides, n, find the interior and exterior angles of the polygon