Chapter 7: Quadrilaterals and Other Polygons

Addressed or Prepped VA SOL:
G.9 The student will verify and use properties of quadrilaterals to solve problems, including practical problems.

G.10 The student will solve problems, including practical problems, involving angles of convex polygons. This will include determining the
a) sum of the interior and/or exterior angles;
b) measure of an interior and/or exterior angle; and
 c) number of sides of a regular polygon.

SOL Progression

Middle School:
• Compare and Contrast quadrilaterals based on their properties
• Determine unknown side lengths or angle measures in quadrilaterals
• Solve linear equations with rational number coefficients
• Draw polygons in the coordinate plane given vertices and find lengths of sides

Algebra I:
• Create equations in one variable
• Solve linear equations in one variable
• Graph in the coordinate plane
• Find the slope of a line
• Identify and write equations of parallel and perpendicular lines

Geometry:
• Find and use the interior and exterior angle measurements of polygons
• Use properties of parallelograms and special parallelograms
• Prove that a quadrilateral is a parallelogram
• Identify and use properties of trapezoids and kites
• Determine angle measurements of a regular polygon in a tessellation
Chapter 7: Quadrilaterals and Other Polygons

Section 7-1: Angles of Polygons

SOL: G.10

Objective:
- Use the interior angle measures of polygons
- Use the exterior angle measures of polygons

Vocabulary:
- Convex – no line that contains a side of the polygon goes into the interior of the polygon
- Diagonal – a segment of a polygon that joins two nonconsecutive vertices
- Equilateral polygon – all sides of the polygon are congruent
- Equiangular polygon – all interior angles of the polygon are congruent
- Exterior angles – angle outside the polygon formed by an extended side
- Interior angles – an angle inside the polygon
- Regular polygon – convex polygon that is both equilateral and equiangular

Core Concept:

In an equilateral polygon, all sides are congruent. In an equiangular polygon, all angles in the interior of the polygon are congruent. A regular polygon is a convex polygon that is both equilateral and equiangular.

Theorem 7.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex n-gon is \((n - 2) \cdot 180^\circ\).

\[m\angle 1 + m\angle 2 + \cdots + m\angle n = (n - 2) \cdot 180^\circ \]

Proof: Ex. 42 (for pentagons), p. 329

Note: Sum of interior angles in a polygon is found by \(S = (n - 2) \times 180^\circ\)

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is \(360^\circ\).

Proof: Ex. 43, p. 330
Chapter 7: Quadrilaterals and Other Polygons

Theorem 7.2 Polygon Exterior Angles Theorem
The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

\[m\angle 1 + m\angle 2 + \cdots + m\angle n = 360° \]

Proof: Ex. 51, p. 330

Note: Sum of exterior angles in a polygon is 360°

Examples:

Example 1:
Find the sum of the measures of the interior angles of the figure.

Example 2:
The sum of the measures of the interior angles of a convex polygon is 1800°. Classify the polygon by the number of sides.

Example 3:
Find the value of \(x \) in the diagram.
Chapter 7: Quadrilaterals and Other Polygons

Example 4:

A polygon is shown.

a. Is the polygon regular? Explain your reasoning

b. Find the measures of $\angle B$, $\angle D$, $\angle E$, and $\angle G$.

Example 5:

Find the value of x in the diagram.

Example 6:

Each face of the dodecahedron is shaped like a regular pentagon.

a. Find the measure of each interior angle of a regular pentagon.

b. Find the measure of each exterior angle of a regular pentagon.

Concept Summary:

The sum of exterior angles is always 360° (regardless of number of sides)
The sum of interior angles is given by the formula, $S = (n - 2) \times 180$
To find the number of sides use: $n = 360/Ext$
The interior and exterior angles always form a linear pair (sum to 180)

Khan Academy Videos:
1. Sum of interior angles of a polygon
2. Sum of exterior angles of a polygon

Homework: 7-ISOL Worksheet

Reading Assignment: student notes section 7-2
Section 7-2: Properties of Parallelograms

SOL: G.9

Objectives:
Use properties to find side lengths and angles of parallelograms
Use parallelograms in the coordinate plane

Vocabulary:
Parallelogram – a quadrilateral with both pairs of opposite sides parallel

Core Concept:

Theorems

Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If \(PQRS \) is a parallelogram, then \(PQ \cong RS \) and \(QR \cong SP \).

Proof p. 332

Theorem 7.4 Parallelogram Opposite Angles Theorem

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

If \(PQRS \) is a parallelogram, then \(\angle P \cong \angle R \) and \(\angle Q \cong \angle S \).

Proof Ex. 37, p. 337

Theorem 7.5 Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If \(PQRS \) is a parallelogram, then \(x^\circ + y^\circ = 180^\circ \).

Proof Ex. 38, p. 337

Theorem 7.6 Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If \(PQRS \) is a parallelogram, then \(QM = SM \) and \(PM = RM \).

Proof p. 334.
Chapter 7: Quadrilaterals and Other Polygons

Examples:

Example 1:
Find the values of x and y.

Example 2:
In parallelogram PQRS, $m \angle P$ is four times $m \angle Q$. Find $m \angle P$.

Example 3:
Write a two-column proof.

Given: ABCD and GDEF are parallelograms
Prove: $\angle C \cong \angle G$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4:
Find the coordinates of the intersection of the diagonals of parallelogram $ABCD$ with vertices $A(1,0)$, $B(6,0)$, $C(5,3)$, and $D(0,3)$.
Example 5:

Three vertices of parallelogram $DEFG$ are $D(-1,4)$, $E(2,3)$, and $F(4,-2)$. Find the coordinates of vertex G.

Concept Summary:
- Opposite sides are parallel and congruent
- Opposite angles are congruent; Consecutive angles are supplementary
- Diagonals bisect each other

Quadrilateral Characteristics Summary

Convex Quadrilaterals

Parallelograms
- 4 sided polygon
- 4 interior angles sum to 360
- 4 exterior angles sum to 360
- Opposite sides parallel and congruent
- Opposite angles congruent
- Consecutive angles supplementary
- Diagonals bisect each other

Rectangles
- Angles all 90°
- Diagonals congruent

Rhombi
- All sides congruent
- Diagonals perpendicular
- Diagonals bisect opposite angles

Squares
- All sides congruent
- Diagonals perpendicular
- Diagonals bisect opposite angles
- Diagonals divide into 4 congruent triangles

Trapezoids
- Bases Parallel
- Legs are not Parallel
- Leg angles are supplementary
- Diagonals bisect opposite angles

Kites
- 2 congruent sides (consecutive)
- Diagonals perpendicular
- Diagonals bisect each other

Isosceles Trapezoids
- Legs are congruent
- Base angle pairs congruent
- Diagonals are congruent

Khan Academy Videos:
1. Introduction to quadrilaterals
2. Quadrilateral properties

Homework: Parallelogram characteristics and problems, Quadrilaterals Worksheet

Reading Assignment: read section 7-3
Chapter 7: Quadrilaterals and Other Polygons

Section 7-3: Proving a Quadrilateral is a Parallelogram

SOL: G.9

Objective:
Identify and verify parallelograms
Show that a quadrilateral is a parallelogram in the coordinate plane

Vocabulary: None new

Core Concepts:

Theorem 7.7 Parallelogram Opposite Sides Converse
If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
If $AB = CD$ and $BC = DA$, then $ABCD$ is a parallelogram.

Theorem 7.8 Parallelogram Opposite Angles Converse
If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
If $\angle A = \angle C$ and $\angle B = \angle D$, then $ABCD$ is a parallelogram.
Proof Ex. 39, p. 347

Theorem 7.9 Opposite Sides Parallel and Congruent Theorem
If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
If $BC \parallel AD$ and $BC = AD$, then $ABCD$ is a parallelogram.
Proof Ex. 40, p. 347

Theorem 7.10 Parallelogram Diagonals Converse
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
If \overline{BD} and \overline{AC} bisect each other, then $ABCD$ is a parallelogram.
Proof Ex. 41, p. 347
Examples:

Example 1:

In quadrilateral $ABCD$, $AB = BC$ and $CD = AD$. Is $ABCD$ a parallelogram? Explain your reasoning.

Example 2:

For what values of x and y is quadrilateral $STUV$ a parallelogram?

Example 3:

Use the photograph to the right. Explain how you know that $\angle S \cong \angle U$.

Example 4:

For what value of x is quadrilateral $CDEF$ a parallelogram?
Example 5:

Show that quadrilateral ABCD is a parallelogram.

Concept Summary:

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. \((\text{Definition})\)

2. Show that both pairs of opposite sides are congruent. \((\text{Parallelogram Opposite Sides Converse})\)

3. Show that both pairs of opposite angles are congruent. \((\text{Parallelogram Opposite Angles Converse})\)

4. Show that one pair of opposite sides are congruent and parallel. \((\text{Opposite Sides Parallel and Congruent Theorem})\)

5. Show that the diagonals bisect each other. \((\text{Parallelogram Diagonals Converse})\)

Khan Academy Videos:
1. \text{Opposite sides} of a parallelogram proof
2. \text{Opposite angles} of a parallelogram proof

Homework: Parallelogram characteristics and problems, \textbf{Quadrilaterals Worksheet}

Reading Assignment: section 7-4
Section 7-4: Properties of Special Parallelograms

SOL: G.9

Objective:
Use properties of special parallelograms
Use properties of diagonals of special parallelograms
Use coordinate geometry to identify special types of parallelograms

Vocabulary:
Rectangle – a parallelogram with four right angles
Rhombus – a parallelogram with four congruent sides
Square – a parallelogram with four congruent sides and four right angles

Core Concept:

Rhombuses, Rectangles, and Squares

A rhombus is a parallelogram with four congruent sides.
A rectangle is a parallelogram with four right angles.
A square is a parallelogram with four congruent sides and four right angles.

Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.
\(\square ABCD \) is a rectangle if and only if \(AC = BD \).

Proof Exs. 85 and 86, p. 358
Chapter 7: Quadrilaterals and Other Polygons

Corollaries

Corollary 7.2 Rhombus Corollary
A quadrilateral is a rhombus if and only if it has four congruent sides.
\(ABCD\) is a rhombus if and only if
\(AB = BC = CD = AD\).

Proof Ex. 79, p. 358

Corollary 7.3 Rectangle Corollary
A quadrilateral is a rectangle if and only if it has four right angles.
\(ABCD\) is a rectangle if and only if
\(\angle A, \angle B, \angle C, \) and \(\angle D\) are right angles.

Proof Ex. 80, p. 358

Corollary 7.4 Square Corollary
A quadrilateral is a square if and only if it is a rhombus and a rectangle.
\(ABCD\) is a square if and only if
\(AB = BC = CD = AD\) and \(\angle A, \angle B, \angle C, \) and \(\angle D\) are right angles.

Proof Ex. 81, p. 358

Theorems

Theorem 7.11 Rhombus Diagonals Theorem
A parallelogram is a rhombus if and only if its diagonals are perpendicular.
\(\square ABCD\) is a rhombus if and only if \(\overline{AC} \perp \overline{BD}\).

Proof p. 352; Ex. 72, p. 357

Theorem 7.12 Rhombus Opposite Angles Theorem
A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
\(\square ABCD\) is a rhombus if and only if \(\overline{AC}\) bisects \(\angle BCD\) and \(\angle BAD\), and \(\overline{BD}\) bisects \(\angle ABC\) and \(\angle ADC\).

Proof Exs. 73 and 74, p. 357
Chapter 7: Quadrilaterals and Other Polygons

Examples:

Example 1:
For any rectangle $ABCD$, decide whether the statement is always or sometimes true. Explain your reasoning.

a. $AB = BC$

b. $AB = CD$

Example 2:
Classify the special quadrilateral. Explain your reasoning.

Example 3:
Find the $m\angle ABC$ and $m\angle ACB$ in the rhombus $ABCD$

Example 4:
Suppose you measure one angle of the window opening and its measure is 90°. Can you conclude that the shape of the opening is a rectangle? Explain.
Chapter 7: Quadrilaterals and Other Polygons

Example 5:

In rectangle $ABCD$, $AC = 7x - 15$ and $BD = 2x + 25$. Find the lengths of the diagonals of $ABCD$.

Example 6:

Decide whether quadrilateral $ABCD$ with vertices $A(-2,3)$, $B(2,2)$, $C(1,-2)$, and $D(-3,-1)$ is a rectangle, a rhombus, or a square. Give all names that apply.

Concept Summary:

- Rectangle: A parallelogram with four right angles and congruent diagonals
 - Opposite sides parallel and congruent
 - All angles equal 90°
 - Diagonals congruent and bisect each other
 - Diagonals break figure into two separate congruent isosceles triangles
- Rhombus: A parallelogram with four congruent sides, diagonals that are perpendicular bisectors to each other and angle bisectors of corner angles
 - Opposite sides parallel; all sides congruent
 - Opposite angles congruent; consecutive angles supplementary
 - Diagonals perpendicular, bisect each other and bisect opposite angles
 - Diagonals break figure into 4 congruent triangles
- Square: All rectangle and a rhombus characteristics
 - Opposite sides parallel; all sides congruent
 - All angles equal 90°
 - Diagonals perpendicular, bisect each other and bisect opposite angles
 - Diagonals break figure into 4 congruent triangles

Khan Academy Videos: none relate

Homework: Characteristics and problems, Quadrilaterals Worksheet

Reading Assignment: section 7-5
Chapter 7: Quadrilaterals and Other Polygons

Section 7-5: Properties of Trapezoids and Kites

SOL: G.9

Objective:
- Use properties of trapezoids
- Use the Trapezoid Midsegment Theorem to find distance
- Use properties of kites
- Identify quadrilaterals

Vocabulary:
- Bases – parallel sides of a trapezoid
- Base angles – consecutive angles whose common side is the base of the trapezoid
- Isosceles trapezoid – legs of the trapezoid are congruent
- Kite – a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent
- Legs – nonparallel sides of the trapezoid
- Midsegment of a trapezoid – segment that connects the legs of the trapezoid; parallel to the bases
- Trapezoid – a quadrilateral with exactly one pair of parallel sides

Core Concept:

Theorems

Theorem 7.14 Isosceles Trapezoid Base Angles Theorem
If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid $ABCD$ is isosceles, then $\angle A = \angle D$ and $\angle B = \angle C$.

Proof Ex. 39, p. 367

Theorem 7.15 Isosceles Trapezoid Base Angles Converse
If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A = \angle D$ (or if $\angle B = \angle C$), then trapezoid $ABCD$ is isosceles.

Proof Ex. 40, p. 367

Theorem 7.16 Isosceles Trapezoid Diagonals Theorem
A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid $ABCD$ is isosceles if and only if $AC = BD$.

Proof Ex. 51, p. 368

Geometry Student Notes 15
Chapter 7: Quadrilaterals and Other Polygons

Theorem

Theorem 7.17 Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

If MN is the midsegment of trapezoid $ABCD$, then $MN \parallel AB, MN \parallel DC$, and $MN = \frac{1}{2}(AB + CD)$.

Proof Ex. 49, p. 368

Theorems

Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral $ABCD$ is a kite, then $AC \perp BD$.

Proof p. 363

Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral $ABCD$ is a kite and $BC = BA$, then $\angle A = \angle C$ and $\angle B \neq \angle D$.

Proof Ex. 47, p. 368

Examples:

Example 1:

Show that $ABCD$ is a trapezoid and decide whether it is isosceles.

Example 2:

$ABCD$ is an isosceles trapezoid, and $m \angle A = 42^\circ$. Find $m \angle B$, $m \angle C$, and $m \angle D$.
Example 3:

In the diagram, \overline{MN} is the midsegment of trapezoid $PQRS$. Find MN.

Example 4:

Find the length of midsegment \overline{YZ} in trapezoid $PQRS$.

Example 5:

Find $m\angle C$ in the kite shown.

Example 6:

What is the most specific name for quadrilateral $JKLM$?
Chapter 7: Quadrilaterals and Other Polygons

Concept Summary:

- In an isosceles trapezoid, both pairs of base angles are congruent and the diagonals are congruent.
- The median of a trapezoid is parallel to the bases and its measure is one-half the sum of the measures of the bases.
- Kites have diagonals perpendicular and “arm” angles congruent.

Khan Academy Videos:
1. Kites as a geometric shape

Homework: Quadrilateral Worksheet

Reading Assignment: section 7-6
Section 7-6: Tessellations

SOL: G.10

Objectives:
- Determine whether a shape tessellates
- Find angle measures in tessellations of polygons
- Determine whether a regular polygon tessellates a plane

Vocabulary:
- Regular tessellation – a transformation that enlarges or reduces an image
- Tessellation – the covering of a plane with figures so that there are no gaps or overlaps

Key Concept:

Core Concept

Angle Measures in a Tessellation of Polygons
The sum of the angle measures around a point of intersection in a tessellation of polygons is 360°.

$\angle 1 + \angle 2 + \angle 3 = 360^\circ$

Core Concept

Regular Tessellations
A regular polygon tessellates a plane if the measure of an interior angle of the polygon is a factor of 360°.

Examples:

Example 1:

Determine whether each shape tessellates.

a. Rhombus

b. Crescent
Example 2:

Find x in each tessellation.
 a.
 b.

Example 3:

Determine whether each polygon tessellates
 a. Equilateral triangle
 b. Regular 13-sided polygon
 c. Regular 14-sided polygon

Concept Summary:
 – A tessellation is a repetitious pattern that covers a plane without overlaps or gaps
 – Only 3 regular polygons tessellate the plane
 – Triangle (Equilateral)
 – Quadrilateral (Square)
 – Hexagon
 – Other irregular polygons can tessellate: rectangles, right isosceles triangle

Khan Academy Videos: none relate

Homework: Chapter Quiz Review

Reading Assignment: read section 7-R
Chapter 7: Quadrilaterals and Other Polygons

Section 7-R: Chapter Review

SOL: G.10

Objectives:
Review chapter material

Vocabulary: none new

Key Concept:

Angles in convex polygons:
- Interior angle + exterior angle = 180°
 - They are a Linear Pair
- Sum of Interior angles, \(S = (n-2) \times 180° \)
- One Interior angle = \(S / n = (n-2) \times 180°/n \)
- Sum of Exterior angles = 360°
- Number of sides, \(n = 360° / \text{Exterior angle} \)

Quadrilaterals: Sides, Angles and Diagonals
- Parallelograms:
 - Opposite sides parallel and congruent
 - Opposite angles congruent
 - Consecutive angles supplementary
 - Diagonals bisect each other
- Rectangles:
 - Angles all 90°
 - Diagonals congruent
- Rhombi:
 - All sides congruent
 - Diagonals perpendicular
 - Diagonals bisect opposite angles
 - Diagonals divide into 4 congruent triangles
- Squares: Rectangle and Rhombi characteristics
- Trapezoids:
 - Bases Parallel
 - Legs are not Parallel
 - Leg angles are supplementary
 - Median is parallel to bases
 Median = \(\frac{1}{2} (\text{base} + \text{base}) \)
 - Isosceles Trapezoid:
 - Legs are congruent
 - Base angle pairs congruent
 - Diagonals are congruent
Chapter 7: Quadrilaterals and Other Polygons

- Kites:
 - 2 congruent sides (consecutive)
 - Diagonals perpendicular
 - Diagonals bisect opposite angles
 - One diagonal bisected
 - One pair of opposite angles congruent (“arm” angles)

Homework: SOL Gateway

Reading Assignment: none

Interior and Exterior always make a linear pair (adds to 180°)

- Interior angle + Exterior angle = 180
- Exterior angle = 180 – interior angle

To find number of sides: 360 divided by exterior angle

\[n = \frac{360}{\text{Ext } \angle} \]

Sometimes use Int + Ext = 180 to find Ext angle

<table>
<thead>
<tr>
<th>Sides</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangles</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Sum of Interior Angles = \((n - 2) \times 180 \)
Angles with Polygons

<table>
<thead>
<tr>
<th>Name</th>
<th>Pic</th>
<th>Nr Sides</th>
<th>Int Sum</th>
<th>Ext Sum</th>
<th>One Int</th>
<th>One Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>🟩</td>
<td>3</td>
<td>180</td>
<td>360</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Quadrilateral</td>
<td>🟠</td>
<td>4</td>
<td>360</td>
<td>360</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Pentagon</td>
<td>🟫</td>
<td>5</td>
<td>540</td>
<td>360</td>
<td>108</td>
<td>72</td>
</tr>
<tr>
<td>Hexagon</td>
<td>🟧</td>
<td>6</td>
<td>720</td>
<td>360</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Heptagon</td>
<td>🟨</td>
<td>7</td>
<td>900</td>
<td>360</td>
<td>128.57</td>
<td>51.43</td>
</tr>
<tr>
<td>Octagon</td>
<td>🟩️</td>
<td>8</td>
<td>1080</td>
<td>360</td>
<td>135</td>
<td>35</td>
</tr>
<tr>
<td>Nonagon</td>
<td>🟩</td>
<td>9</td>
<td>1260</td>
<td>360</td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>Decagon</td>
<td>🟩️</td>
<td>10</td>
<td>1440</td>
<td>360</td>
<td>144</td>
<td>36</td>
</tr>
<tr>
<td>Eleven-gon</td>
<td>🟩️</td>
<td>11</td>
<td>1620</td>
<td>360</td>
<td>147.27</td>
<td>32.72</td>
</tr>
<tr>
<td>Dodecagon</td>
<td>🟩️</td>
<td>12</td>
<td>1800</td>
<td>360</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>N-gon</td>
<td>😊</td>
<td>n</td>
<td>(n-2)×180</td>
<td>360</td>
<td>180-Ext</td>
<td>360/n</td>
</tr>
</tbody>
</table>

Exterior angles always sum to 360 (once around a circle).
Chapter 7: Quadrilaterals and Other Polygons

Polygon Hierarchy

Polygons

Quadrilaterals

Parallelograms

Rectangles

Squares

Rhombi

Kites

Trapezoids

Isosceles Trapezoids

Polygons are closed figures with line segments as sides. Exterior Angles add to 360.

Quadrilaterals are 4-sided figures. Interior Angles add to 360.
Chapter 7: Quadrilaterals and Other Polygons

Parallelogram:
- Sides: Opposite sides parallel and congruent
- Angles: Opposite angles congruent
 Consecutive angles supplementary
- Diagonals: Bisect each other

Rectangle:
- Sides: Opposite sides parallel and congruent
- Angles: Opposite angles congruent
 Consecutive angles supplementary
 Corner angles = 90°
- Diagonals: Bisect each other
 Congruent

Rhombus
- Sides: Opposite sides parallel and congruent
 All four sides equal
- Angles: Opposite angles congruent
 Consecutive angles supplementary
- Diagonals: Bisect each other
 Bisect opposite angles
 Perpendicular to each other
 Divides into 4 congruent triangles
Chapter 7: Quadrilaterals and Other Polygons

Square:

Sides: Opposite sides parallel and congruent
All four sides equal

Angles: Opposite angles congruent
Consecutive angles supplementary
Corner angles = 90°

Diagonals: Bisect each other
Congruent
Bisect opposite angles
Perpendicular to each other
Divides into 4 congruent triangles

Trapezoid

Sides: Bases are parallel
Legs are not parallel

Angles: Leg angles supplementary

Diagonals: nothing special

Median: parallel to the bases
connects leg midpoint to other leg midpoint
formula: \(\text{Median} = \frac{\text{Base}_1 + \text{Base}_2}{2} \)

Isosceles Trapezoid

Sides: Bases are parallel
Legs are not parallel
but are congruent

Angles: Leg angles supplementary
Base angle pairs are congruent

Diagonals: congruent

Median: parallel to the bases
connects leg midpoint to other leg midpoint
formula: \(\text{Median} = \frac{\text{Base}_1 + \text{Base}_2}{2} \)