Multiple Choice

Identify the choice that best completes the statement or answers the question.

____ 1. Which of the following appears to be a pair of similar shapes?

a.

c.

b.

d.

2. Four triangles are shown on the grid below.

Which two triangles appear to be similar?

- a. M and S
- b. M and N
- c. N and S
- d. R and N
- 3. The following is true about similar triangles ABC and DEF.

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{2}{1}$$

Which could be the lengths of BC and EF?

a. BC=6 and EF=3

c. BC=3 and EF=6

b. BC=9 and EF=3

d. BC=3 and EF=9

Pre-High School SOL Chapter 8

4. Which pair of triangles is most likely similar?

- a. 1 and 4
- b. 2 and 5
- c. 3 and 5
- d. 4 and 2
- 5. Triangle MOE is similar to triangle SAW. Which must be true?

- a. ∠MEO ≅ ∠ASW
- b. $\frac{MO}{SA} = \frac{OE}{SW}$

- c. \angle MEO $\cong \angle$ SWA
- d. $\frac{MO}{SA} = \frac{ME}{AW}$
- 6. If $\triangle ABC$ is similar to $\triangle DEF$, which of the following must be true?

- a. $\frac{AB}{AC} = \frac{DE}{EE}$
- b. $\frac{AB}{DF} = \frac{AC}{EF}$
- c. $\frac{AB}{DB} = \frac{DE}{DB}$
- d. $\frac{AB}{DE} = \frac{AC}{DE}$
- 7. What must the value of x be in order for the figures below to be similar?

- a. 16 cm
- b. 14 cm
- c. 12 cm
- d. 10 cm

Pre-High School SOL Chapter 8

8. What value of x would make $\triangle ABC$ similar to $\triangle DEF$?

- a. 26
- b. 29
- c. 31
- d. 32

9. This is a pair of similar triangles.

Which of the following proportions is true for these triangles?

- a. $\frac{\alpha}{s} = \frac{c}{t}$
- b. $\frac{a}{b} = \frac{b}{t}$
- c. $\frac{a}{s} = \frac{c}{r}$
- d. $\frac{a}{s} = \frac{s}{h}$

10. What is the length of side n on the second triangle?

9 3

- b. 2.5
- c. 4

d. 5

_ 11. Triangle *FOX* is similar to triangle *FAN*.

Which side of triangle FOX corresponds to side \overline{FA} ?

- a. <u>FO</u>
- b. <u>40</u>
- C. #70
- d. \overline{NX}

Pre-High School SOL Chapter 8 Name: _____

1.	A is a comparison of two quantities
2.	A is an equation stating that two ratios are equal
3.	The is the ratio of corresponding sides of similar polygons.
4.	Two polygons are similar if and only if their corresponding angles are and the measures of their corresponding sides are
5.	The <u>three postulates or theorems of similarity</u> are,, and
6.	Like equality and congruence, triangle similarity is, and
7.	If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional lengths Theorem
8.	A midsegment of a triangle is to one side of the triangle, and its length is the length of that side.
9.	If three or more parallel lines intersect two transversals, then they cut off the transversals
10.	If three or more parallel lines cut off congruent segments on one transversal, then they cut off segments on every transversal
11.	An angle bisector in a triangle separates the opposite side into segments that have the same as the other two sides
12.	Similar triangles have perimeters in the same as the corresponding sides
13.	Corresponding angle bisectors, medians, and altitudes of similar triangles have lengths in the same ratio assides