Proportion Facts: Proportions are an equation that has one ratio (fraction) on each side To solve proportions we cross-multiply Common mistakes in cross-multiplying is when one of the fractions contain a + or - sign: we forget to use the distribution property Lots of word problems can be solved using proportions (or proportional reasoning). These can be geometry problems (example 1) or distance (rate \times time) problems (example 2) or "buying" problems (example 3) **Example 1:** If Jon's shadow is 4 feet long (and he is 6 feet tall) and the telephone poll's shadow is 20 feet long, how tall is the telephone poll? **Example 2:** Lynne made a trip to town and back. The trip there took three hours and the trip back took four hours. She averaged 6 km/hr on the return trip. Find the average speed of the trip there. $$d = r \times t$$ \Rightarrow $d = 3x = 4 \times 6$ \Rightarrow $3x = 24$ \Rightarrow $x = 8 km/hr$ **Example 3:** If you can buy one can of pineapple chunks for \$2 then how many can you buy with \$10? Period 10(b + 5) = 35 10b + 50 = 35 10b = -15b = -1.5 ## Solving Proportions Solve each proportion. 10(10) = 8n 7) $\frac{6}{h-1} = \frac{9}{7}$ 1) $\frac{10}{8} = \frac{n}{10}$ 3) $\frac{9}{6} = \frac{x}{10}$ 5) $\frac{4}{3} = \frac{8}{x}$ $$9) \ \frac{5}{6} = \frac{7n+9}{9}$$ 11) $\frac{7}{9} = \frac{b}{b-10}$ 13) $$\frac{4}{n+2} = \frac{7}{n}$$ 13) $\frac{4}{n+2} = \frac{7}{n}$ $$15) \ \frac{x-3}{x} = \frac{9}{10}$$ 15) $$\frac{x-3}{x} = \frac{9}{10}$$ 17) $$\frac{p+10}{p-7} = \frac{8}{9}$$ 19) $\frac{n-5}{n+8} = \frac{2}{7}$ 2) $$\frac{7}{5} = \frac{x}{3}$$ 4) $$\frac{7}{n} = \frac{8}{7}$$ $$6) \ \frac{7}{b+5} = \frac{10}{5}$$ $$8) \ \frac{4}{m-8} = \frac{8}{2}$$ $$10) \ \frac{4}{9} = \frac{r-3}{6}$$ 12) $$\frac{9}{k-7} = \frac{6}{k}$$ 14) $$\frac{n}{n-3} = \frac{2}{3}$$ 16) $$\frac{5}{r-9} = \frac{8}{r+5}$$ $5(r+5) = 8(r-9)$ $5r + 25 = 8r - 72$ $97 = 3r$ $32.3 = r$ 32.3 = r $$\frac{n+4}{n-4}$$ $$18) \ \frac{2}{8} = \frac{n+4}{n-4}$$ $$20) \ \frac{n-6}{n-7} = \frac{9}{2}$$