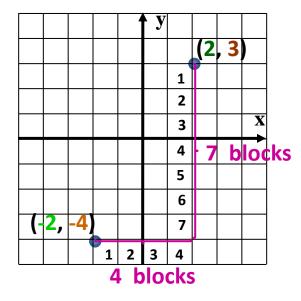
Distance between two points with coordinates

Example: (2, 3) and (-2, -4)

Formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{((-2)-2)^2 + ((-4)-3)^2}$$



$$d = \sqrt{(-4)^2 + (-7)^2} = \sqrt{16 + 49} = \sqrt{65} = 8.09$$

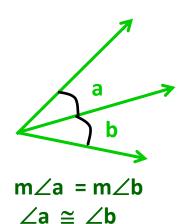
Solution using Pythagorean Theorem: $a^2 + b^2 = c^2$

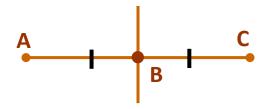
$$4^2 + 7^2 = c^2$$
 (left or right blocks)² + (up or down blocks)²

$$16 + 49 = c^2$$

$$65 = c^2$$
 $\sqrt{65} = \sqrt{c^2}$ $\sqrt{65} = 8.09 = c$

Bisector cuts into two congruent (equal) parts





1

Midpoint a point halfway between two coordinate points

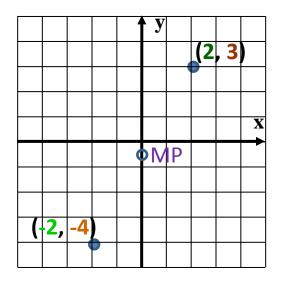
Example: Given two endpoints (2. 3) and (-2. -4)

Formula:
$$\left(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2}\right)$$

Solution using formula:

$$\left(\frac{-2+2}{2},\frac{-4+3}{2}\right)$$

$$\left(\frac{0}{2}, \frac{-1}{2}\right) = \left(0, \frac{-1}{2}\right)$$

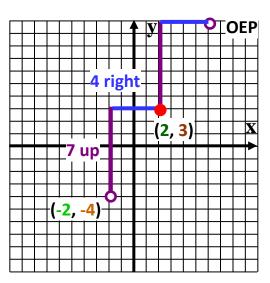


Example: Given An endpoint and a midpoint (Travel Problem)

MidPoint (2, 3) and (-2, -4) End point

Graphing Solution using triangles:

Midpoint is 7 up and 4 right from the endpoint. Move 7 up and 4 right from midpoint to get to the other endpoint.



Solution using numbers:

MP(2,3) - EP (-2,-4) + Trvl (4,7) Travel (+4, +7) OEP (6, 10)

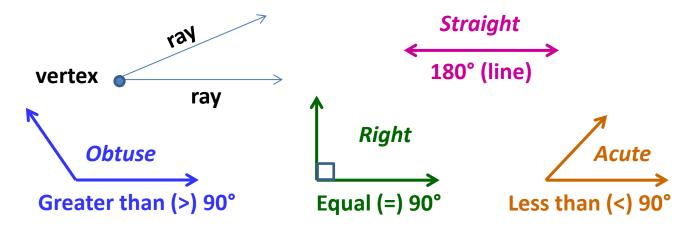
MP - midpoint

Trvl - travel distance

OEP – other endpoint

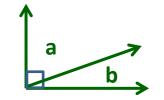
From EP to MP is travel; from MP to OEP is travel

Angles between two rays hinged at a vertex



Special Angle Pairs

Complementary a pair of angles that sum to 90°



$$m\angle a + m\angle b = 90^{\circ}$$

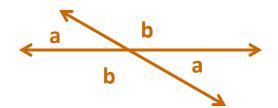
$$m\angle a = 90^{\circ} - m\angle b$$
 $m\angle b = 90^{\circ} - m\angle a$

Supplementary a pair of angles that sum to 180°

Linear Pair:
$$m\angle c + m\angle d = 180^{\circ}$$

$$m\angle c = 180^{\circ} - m\angle d$$
 $m\angle d = 180^{\circ} - m\angle c$

Vertical Angles have the same measure (congruent)

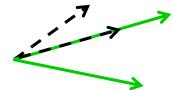


$$m\angle a = m\angle a$$

$$m \angle b = m \angle b$$

$$m\angle a + m\angle b = 180$$
 (linear pair)

Adjacent Angles share a common side (ray)



Linear Pairs – supplementary adjacent angles ← - - - -

Polygons made up of line segments for sides

Triangle	Quadrilateral	Pentagon
1 2	4 3	5 4 3
3 sides	4 sides	5 sides
Hexagon	Heptagon	Octagon
1 2 3 6 5 4	2 3 4 7 6 5	1 2 3 8 4 7 6 5
6 sides	7 sides	8 sides
Nonagon 1 2 3 4 9 8 7 6	Decagon 2 3 4 5 10 9 8 7	Dodecagon 1 3 4 5 12 6 11 9 8
9 sides	10 sides	12 sides

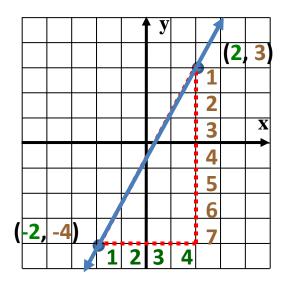
All others known as n-gons: 11 – Eleven-gon or 20 – Twenty-gon or 50 – Fifty-gon

Regular polygons all sides (and angles) are equal Irregular polygons the sides (or angles) are not all equal

Perimeter is sum (add up) of all sides

Slope - steepness and direction of a line

Formula:
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \frac{up \ or \ down}{right \ or \ left}$$



From right triangle:

$$m = \frac{blocks \ up \ or \ down}{blocks \ right \ or \ left}$$

L1

2

-2

L2

3

-4

7/4

$$m=\frac{7}{4}$$

From slope formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-4)}{2 - (-2)} = \frac{3 + 4}{2 + 2} = \frac{7}{4}$$

Using calculator:

STAT, EDIT

Enter x-data into L1 and y-data into L2

STAT, CALC

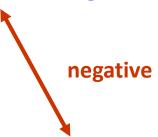
Option 4: LinReg y=ax+b

Enter 5 times a=1.75 a = Slope b=-.5 b = Y-intercept

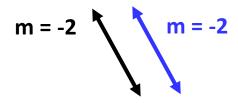
If decimal, put decimal in calculator and hit Math Key, enter, enter to convert back to fraction 1.75 -> Frac

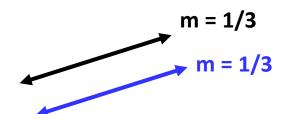
Slope - steepness and direction of a line

Formula:
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \frac{up \ or \ down}{right \ or \ left}$$



Parallel – same (equal) slopes



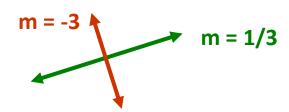


vertical lines (|)have an undefined slope (run = 0)

horizontal lines (-) have no slope (= 0) (rise = 0)

Perpendicular (90°) – negative reciprocals (flip and negate)

$$m = -3/2$$
 $m = 2/3$

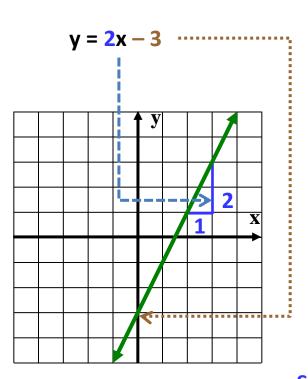


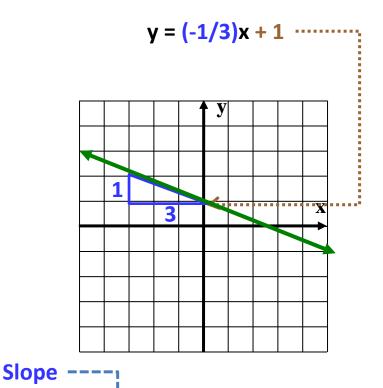
Slope – steepness and direction of a line

Graphing Lines

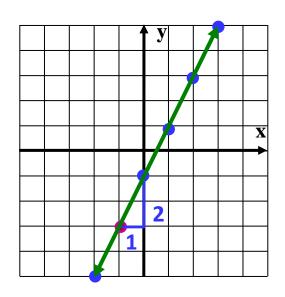
Y-intercept (when x = 0)

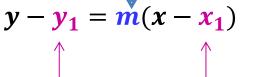
Slope-Intercept Form: y = mx + b < ··········

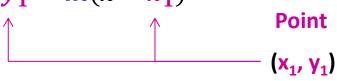




Point-Slope Form:







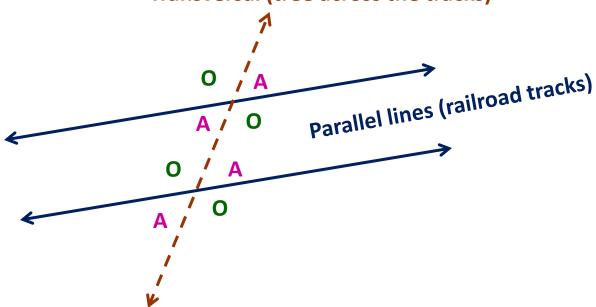
$$Y + 3 = 2(x + 1)$$

Point (-1, -3)

Slope: m = 2

Parallel Lines

Transversal (tree across the tracks)



8 angles: 4 congruent acute (little angles) and 4 congruent obtuse (big angles)
Or 8 right angles

Pairs of A's and O's across the "x" are vertical angles (=)

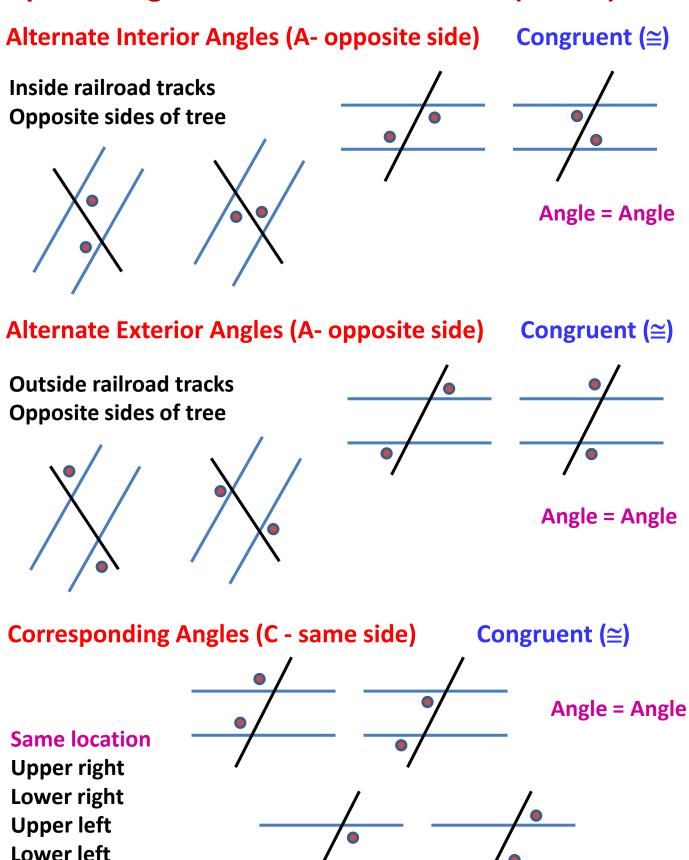
Big = Big or Little = Little

One of each that form a "y" are a linear pair (o + a = 180)

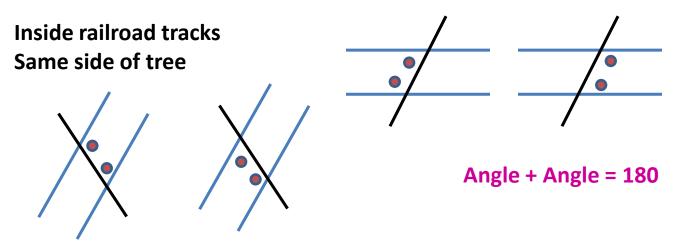
Big + Little = 180

Vertical angles and Linear pair angles only involve <u>two</u> lines!!!

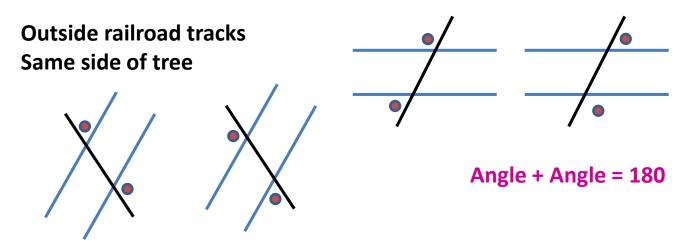
Special Angle Pairs with Parallel Lines (3 lines)

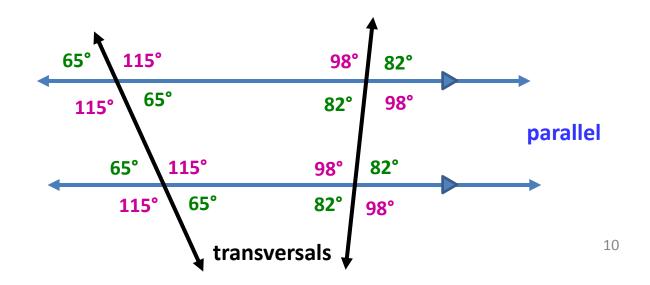


Special Angle Pairs with Parallel Lines (3 lines)



Consecutive Exterior Angles (C – same side) Supplementary





Angles with Polygons

Name	Pic	Nr Sides	Int Sum	Ext Sum	One Int	One Ext
Triangle		3	180	360	60	120
Quadrilateral	\Diamond	4	360	360	90	90
Pentagon		5	540	360	108	72
Hexagon		6	720	360	120	60
Heptagon		7	900	360	128.57	51.43
Octagon		8	1080	360	135	35
Nonagon		9	1260	360	140	40
Decagon		10	1440	360	144	36
Eleven-gon		11	1620	360	147.27	32.72
Dodecagon		12	1800	360	150	30
N-gon	•••	n	(n-2)×180	360	180-Ext	360/n

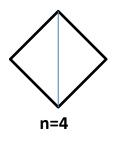
Exterior angles always <u>sum</u> to 360 (once around a circle).

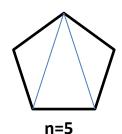
Interior and Exterior always make a linear pair (adds to 180°)

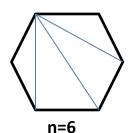
Interior angle + Exterior angle = 180 Exterior angle = 180 - interior angle

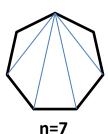
To find number of sides: 360 divided by exterior angle $n = 360 / Ext \angle$

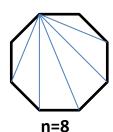
Sometimes use Int + Ext = 180 to find Ext angle





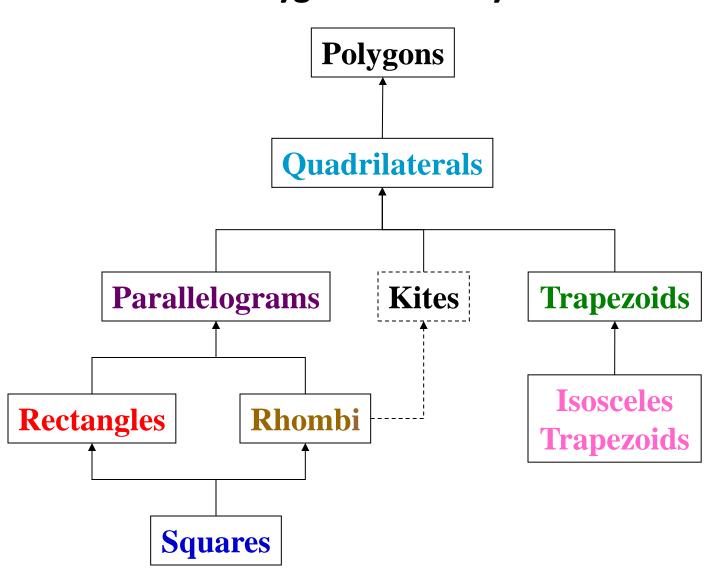






Sides	3	4	5	6	7	8
Triangles	1	2	3	4	5	6
Sum of Interior Angles = $(n-2)$ v 180						

Polygon Hierarchy



Polygons are closed figures
with line segments as sides
Exterior Angles add to 360

Quadrilaterals are 4-sided figures
Interior Angles add to 360

Parallelogram:

Sides: Opposite sides parallel and congruent

Angles: Opposite angles congruent

Consecutive angles supplementary

Diagonals: Bisect each other

D C D

Rectangle:

Sides: Opposite sides parallel and congruent

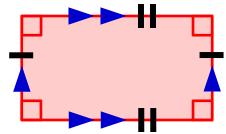
Angles: Opposite angles congruent

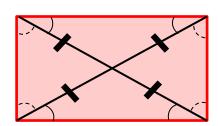
Consecutive angles supplementary

Corner angles = 90°

Diagonals: Bisect each other

Congruent





Rhombus

Sides: Opposite sides parallel and congruent

All four sides equal

Angles: Opposite angles congruent

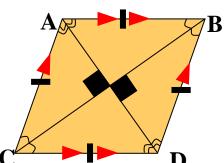
Consecutive angles supplementary

Diagonals: Bisect each other

Bisect opposite angles

Perpendicular to each other

Divides into 4 congruent triangles



Square:

Sides: Opposite sides parallel and congruent

All four sides equal

Angles: Opposite angles congruent

Consecutive angles supplementary

Corner angles = 90°

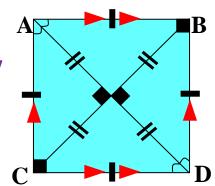
Diagonals: Bisect each other

Congruent

Bisect opposite angles

Perpendicular to each other

Divides into 4 congruent triangles



Trapezoid Sides:

Bases are parallel

Legs are not parallel

Angles: Leg angles supplementary

Diagonals: nothing special

Median: parallel to the bases

connects leg midpoint to other leg midpoint

formula: $Median = \frac{Base1 + Base2}{2}$

Sides: Bases are parallel

Legs are not parallel

but are congruent

Angles: Leg angles supplementary

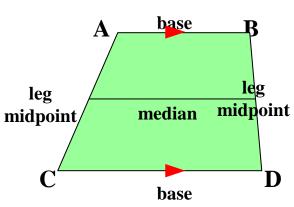
Base angle pairs are congruent

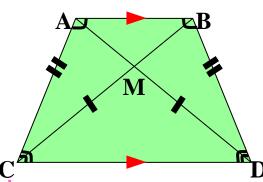
Diagonals: congruent

Median: parallel to the bases

connects leg midpoint to other leg midpoint

formula: $Median = \frac{Base1 + Base2}{2}$





Classify Triangles by Angles: (by largest angle only)

Acute: All 3 angles acute

Equiangular: All angles are equal (60°)

Right: Right angle in triangle

Obtuse: One angle obtuse in triangle

Classify Triangles by Sides: (how many sides equal)

Scalene: no sides equal

Isosceles: 2 sides equal

Equilateral: 3 sides equal

 $\angle 3$ is vertex angle leg

Base angles: $\angle 1 \cong \angle 2$

Equilateral means Equiangular and vice versa

Triangle Congruence

If proving triangles congruent, always mark <u>only one triangle</u> up with S (for sides) and A (for angles) based on the items you have congruent

Post/Thrm	Picture	Hidden Features
SSS	SSS	Shared Side
SAS	SXAS	Shared Side Vertical Angles // Lines → Alt Int ∠'s
ASA	A A A A A A A A A A A A A A A A A A A	Shared Side Vertical Angles // Lines → Alt Int ∠'s
AAS	A	Shared Side Vertical Angles // Lines → Alt Int ∠'s
HL		Shared Side

HL – Hypotenuse Leg is a short cut for SSS because of the Pythagorean Theorem

Triangle Congruence Hidden Features

Feature	Picture	Triangles ≅ by
Shared Side (Reflexive Prop)	s s	SSS
Shared Angle (Reflexive Prop)	S	ASA
Vertical Angles ("Bow Tie")	SAAS	SAS
Parallel Sides (lines) Alternate Interior Angles	ASS	AAS

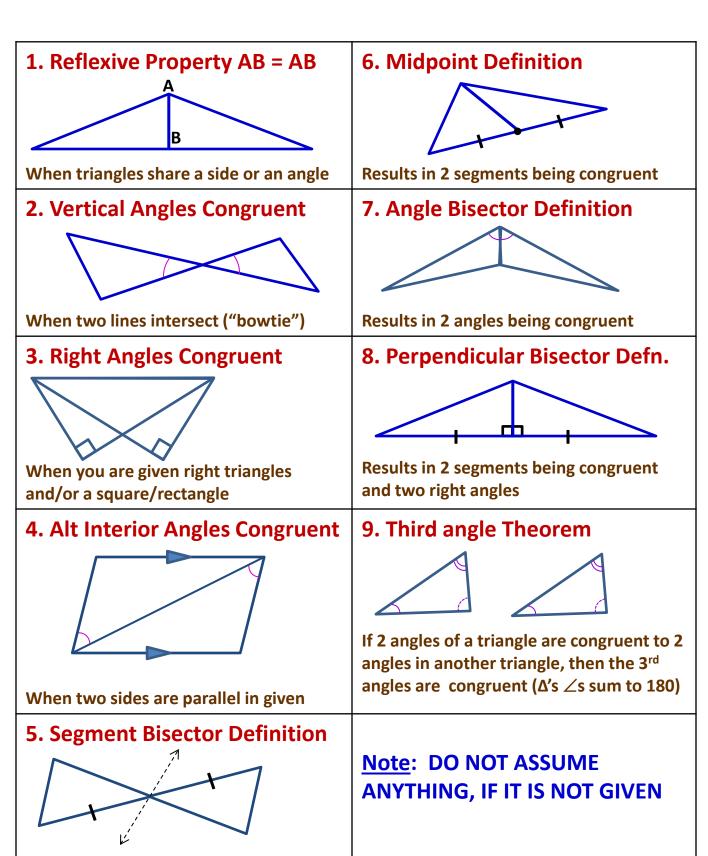
NEVER AAA or ASS or SSA

No Cars, donkeys, profanity or Social Security Administration

 $\triangle ABC \cong \triangle LMN$ Order Rules!!! (first to first, second to second, etc)
Angles match by <u>one</u> letter Sides match by <u>two</u> letter groups

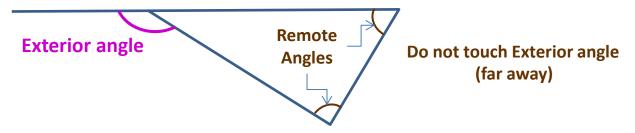
"CPCTC" – corresponding parts of congruent triangles are congruent

9 Common Properties, Definitions & Theorems for Triangles



Results in 2 segments being congruent

Exterior Angle in Triangles



Exterior angle = Remote angle + Other Remote angle

Given 3 numbers, do they make a triangle?

- 1. Put in order from smallest to largest
- 2. Is Small + Middle > Large?
 - A. Yes, then it makes a triangle
 - B. No, then it does not make a triangle

Example A: 8, 11, 4

1. Ordered: 4, 8, 11

2. 4 + 8 = 12 > 11 so triangle

Example B: 9, 13, 4

1. Ordered: 4, 9, 13

2. 4 + 9 = 13 = 13 so <u>no</u> triangle

Given 2 numbers, find range of the third side

- 1. Put in order from smallest to largest
- 2. (Large Small) < Third Side < (Large + Small)

Example: Given 3 and 9 find third side range

$$9 - 3 = 6 < Third Side < 12 = 9 + 3$$

Angles versus Sides in Triangles

- 1. Largest side is opposite the largest angle
- 2. Middle side is opposite the middle angle
- 3. Smallest side is opposite the smallest angle

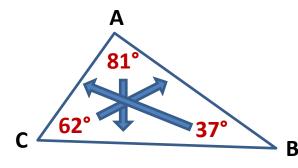
Steps to assure order

- 1. Put given information in order requested (smallest to largest or largest to smallest)
- 2. Substitute the corresponding letters (1 Angles; 2 for Sides)
- 3. Put in the missing letters (from the 3 in triangle)

Sides Example: Find Sides largest to smallest

Lg > Md > Sm

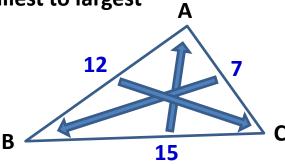
- 1. 81° > 62° > 37°
- 2. $\angle A > \angle C > \angle B$
- 3. BC > AB > AC



Angles Example: Find Angles smallest to largest

Sm < Md < Lg

- 1. 7 < 12 < 15
- 2. AC < AB < BC
- 3. ∠B < ∠C < ∠A



Special Segments in Triangles

Segment	Point of Concurrency	Special Characteristic	Starts	Finishes
Perpendicular Bisector	Circumcenter	Equidistant from vertices	Nowhere Special	Midpoint
Angle Bisector	Incenter	Equidistant from sides	Vertex	Nowhere Special
Median	Centriod	Center of Gravity	Vertex	Midpoint
Altitude	Orthocenter	Nothing Special	Vertex	Nowhere Special

Point of concurrency is where the three segments of the same type come together (3 Medians of a triangle cross at the Centroid)

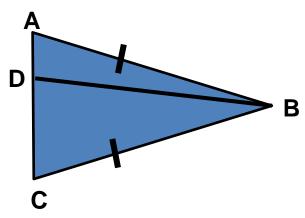
"Bigger angle opposite bigger side"

SAS Inequality, or Hinge Theorem

If \angle ABD < \angle CBD, then AD < DC

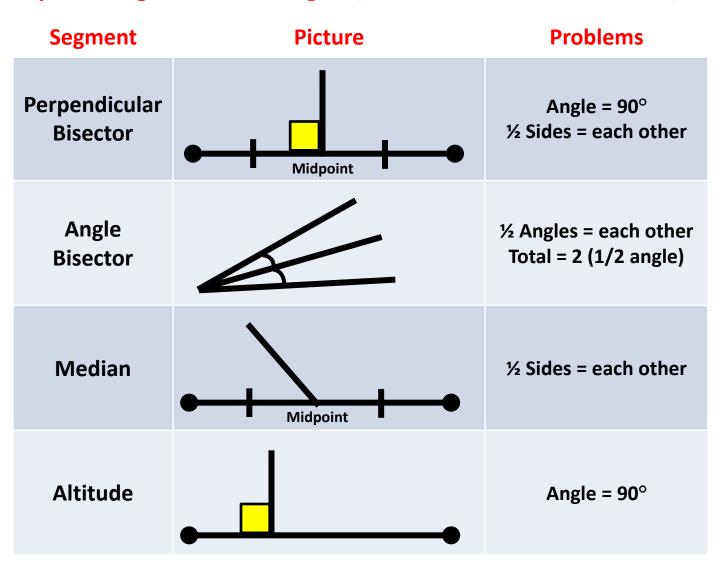
SSS Inequality

If AD < DC, then \angle ABD < \angle CBD



This is our virtual alligator problem

Special Segments in Triangles (Pictures and Possible Problems)



Logic Symbols

$$\wedge$$
 --- and \vee --- or \therefore --- therefore \sim --- not \rightarrow --- if ..., then \leftrightarrow --- if and only if

English to Symbols

Let P = We have a test and let Q = It snows tomorrow R = we will do makeup work and T = finish our test

If it snows tomorrow, then we don't have a test.

$$Q \rightarrow P$$

If we don't have a test, then we will do makeup work or finish our test.

$$P \rightarrow R \vee T$$

If it snows tomorrow, then we don't have a test and we will not do makeup work.

$$Q \rightarrow P \wedge R$$

Logic Symbols

```
∴ --- therefore
^ --- and
                  V --- or
                    \rightarrow --- if ..., then \leftrightarrow --- if and only if
~ --- not
```

Logic Laws (help us draw correct conclusions)

Detachment: (like school rules)

 $A \rightarrow B$ is true. A is true, therefore B is true

If you have more than 3 tardies, you get MIP. Jon has 3 tardies; so Jon will get MIP.

Syllogism: (like transitive property of equality – removes the middle man)

 $A \rightarrow B$ and $B \rightarrow C$, so $A \rightarrow C$

If you have more than 10 absences, you have to take the final. If you have to take the final, then you don't get out early. So, if you have more than 10 absence, you don't get out early.

Special If ..., then ... statements

Converse: converse --- change order (flips)

If it snows, then we get out early.

If we get out early, then it snows.

inverse --- insert nots (negate: ~ --- not)

If it snows, then we get out early.

If it does not snow, then we do not get out early.

Contrapositive: <u>contrapositive --- change order and nots (both)</u>

If it snows, then we get out early.

If we did not get out early, then it did not snow.

More proof stuff

Reflexive Property
Symmetric Property
Transitive Property

Equality

x = x 7 = x so x = 7a = b, b = c so a = c

Congruence

 $\overline{AD} \cong \overline{AD}$ $\overline{AD} \cong \overline{JK} \text{ so } \overline{JK} \cong \overline{AD}$ $\overline{AD} \cong \overline{BC}, \overline{BC} \cong \overline{XY}$ so $\overline{AD} \cong \overline{XY}$

Alphabetical order (RST) increase in number of = or \cong signs (1,2,3)

Venn Diagrams

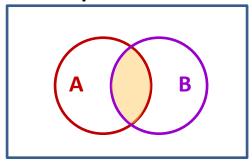
"Some of A is B"

Example: A: Scalene triangles

B: Obtuse triangles

Some obtuse triangles are scalene

Overlap is the "Some"



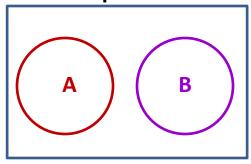
"None of A is B"

Example: A: Equilateral triangles

B: Obtuse triangles

No obtuse triangle is equilateral

No Overlap is the "None"



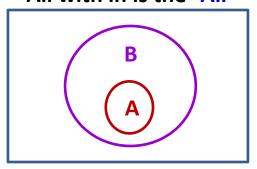
"All of A is B"

Example: A: Equilateral triangles

B: Isosceles triangles

All equilateral triangles are isosceles

All with in is the "All"



Proportions: Cross-Multiply

Proportions: (seeing the bear trap)
Any time a top or bottom of
proportion has a + or – sign in it;
put parentheses around it

Wrong way:

$$\frac{3}{x} = \frac{2}{x-2}$$

$$3x - 2 = 2x$$
 (error)
 $x \neq 2$

Right way:

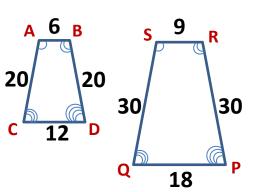
$$\frac{3}{x} = \frac{2}{(x-2)}$$

$$3(x-2) = 2x$$
$$3x-6 = 2x$$
$$x = 6$$

Similar Triangles (and Polygons)

Similar (~) Figures

Same Shape, but not same size

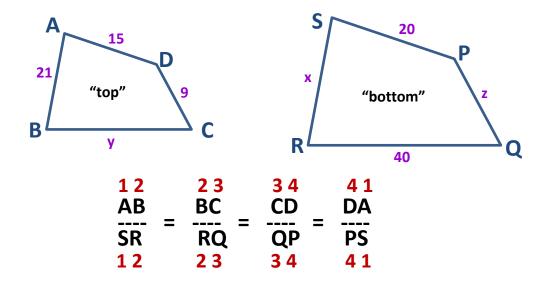


- Corresponding <u>angles are congruent</u>
- Corresponding <u>sides are proportional</u>
- Scale Factor is proportion in simplest form
- $9 = \frac{3}{2} \times 6$ $18 = \frac{3}{2} \times 12$ $30 = \frac{3}{2} \times 20$
- Order rules again (to find corresponding things)!!
 Quadrilateral ABCD ~ Quadrilateral SRQP
 1234
- Assign one figure to top of ratio, the other to the bottom;
- Solve using proportions

Similar Triangles (and Polygons)

Similar (~) Figures

- Order rules again (to find corresponding things)!!
 Quadrilateral ABCD ~ Quadrilateral SRQP
 1234
- Assign one figure to top of ratio, the other to the bottom
- Solve using proportions



"bottom"
$$\frac{21}{x} = \frac{y}{40} = \frac{9}{z} = \frac{15}{20}$$
 scaling factor: $\frac{15}{20} = \frac{3}{40}$

$$\frac{21}{x} = \frac{15}{20}$$
 $\frac{y}{40} = \frac{15}{20}$ $\frac{9}{z} = \frac{15}{20}$

$$15x = 20(21)$$
 $20y = 15(40)$ $15z = 9(20)$ $15x = 420$ $20y = 600$ $15z = 180$ $x = 28$ $y = 30$ $z = 12$

Similar Triangles

Proving Triangles Similar

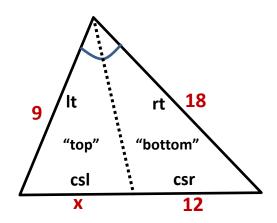
- Angles are congruent
- Sides are proportional (not congruent)

Post/Thrm	Picture	Δ Congruence / Logic
SSS	9 9 3 2	SSS All sides multiplied by same number (1/3)
SAS	10 16 A 8	SAS Sides either side of congruent angle multiplied by same number (5/4)
AA	A A A	ASA / AAS If two angles congruent, since all three add to 180, then all 3 angles congruent

"Multiplied by same number" is the scaling factor

Similar Triangles (Special Cases)

Angle Bisector Theorem



$$\frac{lt}{csl} = \frac{rt}{csr}$$

Sides Partial

Alternative proportion

Sides Partial

$$\frac{lt}{rt} = \frac{csl}{csr}$$

Example

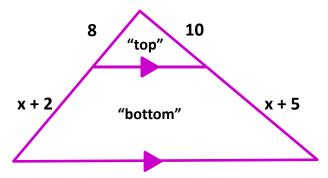
$$\frac{9}{18}=\frac{x}{12}$$

$$18(x) = 9 (12)$$

 $18x = 108$
 $x = 6$

Csl/csr - cut side left or right

Transversals in Parallel Lines



Note: parallel bases cannot use this special case (they must use little vs big triangle proportions)

Left Right

$$\frac{tl}{bl} = \frac{tr}{br}$$

Example

$$\frac{8}{x+2}=\frac{10}{x+5}$$

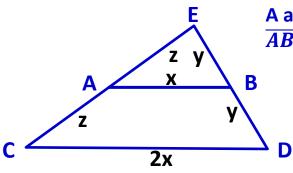
$$8(x + 5) = 10 (x + 2)$$

 $8x + 40 = 10x + 20$
 $20 = 2x$

$$10 = x$$

Similar Triangles (Special Cases)

Mid-segment Theorem



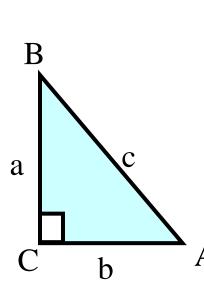
A and B are midpoints \overline{AB} is mid-segment

Example: Given CD = 20, EA = 8, BD = 7 Find AB, EB, and AC 10, 7, 8

Note: top triangle is half of big triangle

Trigonometry in Triangles

Trig Relationship between two acute angles



Sin A is opposite over hypotenuse: a/c ← Cos A is adjacent over hypotenuse: b/c ← Tan A is opposite over adjacent: a/b

Sin B is opposite over hypotenuse: b/c ← - -

Cos B is adjacent over hypotenuse: a/c <

Tan B is opposite over adjacent: b/a

So, Sin A = Cos B and Cos A = Sin B

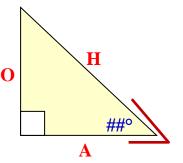
 $a^2 + b^2 = c^2$ (from Pythagorean Theorem)

 $m\angle A + m\angle B = 90^{\circ}$ (3\angle's of $\Delta = 180^{\circ}$)

Trigonometry in Triangles

Steps for solving Trig problems

1. Mark perspective (given) angle



2. Label each side of the triangle as

H for hypotenuse (opposite 90° and usually the diagonal side)

A for side adjacent to given angle (A & H form the given angle)

O for the side opposite the given angle

3. Determine using the information (sides and angles) given in the problem which of the trig functions you need to solve for variable

sin (angle) =
$$\frac{\text{opp}}{\text{hyp}}$$
 cos (angle) = $\frac{\text{adj}}{\text{hyp}}$ tan(angle) = $\frac{\text{opp}}{\text{adj}}$
SOH $S = \frac{O}{H}$ CAH $C = \frac{A}{H}$ TOA $T = \frac{O}{A}$

4. Set up an equation using the trig function and the variable

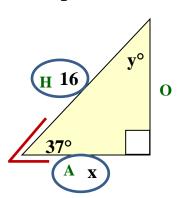
5. Solve for the variable (based on where the variable is)

Variable on top; multiply both sides by the bottom Example 1 on next page

Variable on bottom: variable and trig function trade places Example 2 on next page

Variable is angle: use <u>inverse</u> trig (2nd key then trig key) Example 3 on next page

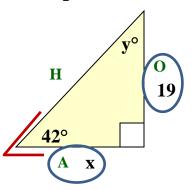
Example 1: (variable on top)



- 2) 16 is H, x is A and no value for O
- 3) Since we have A and H we need to use cos
- 4) $\cos (37^{\circ}) = \frac{x}{16}$ (x is on top multiply both sides by bottom)
- 5) $16 \cos (37^\circ) = x = 12.78$

Use 90 - 37 = 53 to find the other angle, y

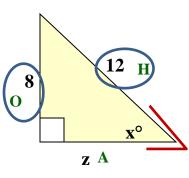
Example 2: (variable on bottom)



- 2) 19 is O, x is A and no value for H
- 3) Since we have O and A (no H) we need to use tan
- 4) $tan (42^{\circ}) = \frac{19}{x}$ (x is on bottom then switch it with the trig function)
- 5) $x = \frac{19}{\tan{(42^\circ)}} = 21.10$

Use 90 - 37 = 53 to find the other angle, y

Example 3: (variable is the angle)



- 2) 12 is H, 8 is O and no value for A -- x is the angle!
- 3) Since we have O and H we need to use sin
- 4) $\sin(x^\circ) = \frac{8}{12}$ (x is angle use inverse sin)
- 5) $x = \sin^{-1}(8/12) = 48.19^{\circ}$

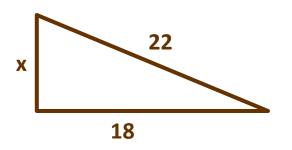
Use Pythagorean Theorem to find one missing side

$$12^2 = z^2 + 8^2 \rightarrow 144 = z^2 + 64 \rightarrow 80 = z^2 \rightarrow 8.94 = z$$

Pythagorean Theorem

On formula sheet: $a^2 + b^2 = c^2$ (c is the hypotenuse) Variable in problem is not always the hypotenuse!!

Pythagorean Triple: 3 whole numbers that satisfy the formula Common examples:



$$x^{2} + 18^{2} = 22^{2}$$

 $x^{2} + 324 = 484$
 $x^{2} = 160$
 $x \approx 12.65$

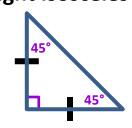
Special Case Right Triangles

Sometimes can be solved using either Trig or Pythagorean Thrm

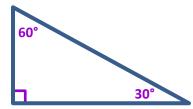
Two cases:

$$45 - 45 - 90$$

Right Isosceles



Right Scalene

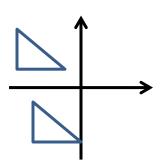


Angle	Side Opposite	If hyp = 20, then
30	½ hypotenuse	1/2(20) = 10
45	½ hypotenuse × √2	1/2(20) × √2 = 14.14
60	½ hypotenuse × √3	½(20) × √3 = 17.32

Transformations

Translation – "Slides"

```
Up – adds to y
Down – subtracts from y
Right – adds to x
Left – subtracts from x
```



Translation function: $(x, y) \rightarrow (x \pm h, y \pm k)$

In picture above: Down 7 and right 3: $(x, y) \rightarrow (x + 3, y - 7)$

Dilations – "Shrinks or Blow-ups"

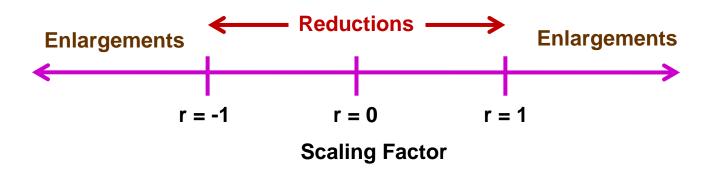
Similar figures (from before)

Scaling factor r: if |r| > 1 then enlargement

if |r| < 1 then reduction

if |r| = 1 then congruence transformation

Negative numbers flip figure over dilation center point



Transformations

Rotations – "Turns" (usually around the origin)

Clockwise:

V

Counterclockwise:

 90° increment turns can be done without using trig

 180° rotation (in either direction) is same as reflection across the origin

Clockwise	Counterclockwise	Samo placos
90°	270°	Same places turning in
180°	180°	different
270°	90°	directions

Transformations

Mirror Image across a line or point

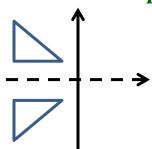
Reflections – "Flips"

Equal distance from reflection point/line

Over x-axis (or horizontal lines)

Equation: $(x, y) \rightarrow (x, -y)$

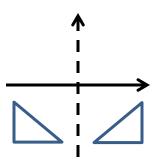
Up/down distance



Over y-axis (or vertical lines)

Equation: $(x, y) \rightarrow (-x, y)$

Left/right distance

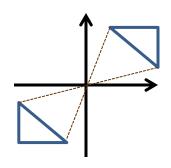


Over origin

Equation: $(x, y) \rightarrow (-x, -y)$ Origin is <u>midpoint</u> of

before and after points

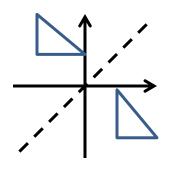
Both distances

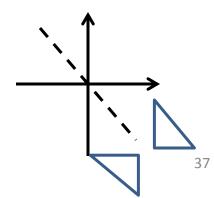


Over (diagonal) line y = xEquation: $(x, y) \rightarrow (y, x)$

Diagonal distance

Over (diagonal) line y = -x
Equation: (x, y) → (-y, -x)
Diagonal distance





Symmetry

- Line symmetry -1) folding the figure in half
 - 2) regular figures have lines of symmetry equal to the number of sides
- Point symmetry -1) where two lines of symmetry intersect
 - 2) midpoint of every point and its reflection
 - 3) even-sided regular figures have it

Rotational symmetry – number of times a figure can be turned

Order – in regular figures equal to the number of sides

Magnitude – equal to 360/order (degrees per turn) (equal to the exterior angle of figure)

Tesselations

A figure, or series of figures, tessellates a plane by covering it without gaps or overlaps (like tile on a floor)

Gaps – interior angles add up to less than 360

Overlaps – interior angles add up to more than 360

Only 3 regular figures tessellate: Triangle, Square, Hexagon

Circles

All points equidistant from the center

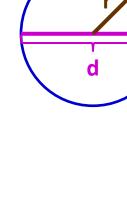
Terms

A = Area

C = Circumference (perimeter)

d = diameter

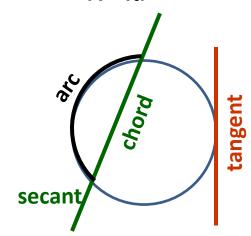
r = radius



d = 2r

 $C = 2\pi r = d\pi$

 $A = \pi r^2$



secant touches circle twice called a chord inside the circle tangent touches circle once

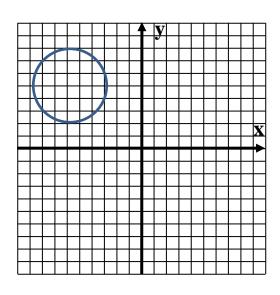
Arc = part of circumference

Equation:
$$(x - h)^2 + (y - k)^2 = r^2$$

Example to the right

$$(x-(-6))^2+(y-5)^2=3^2$$

$$(x+6)^2 + (y-5)^2 = 9$$



Circles

Segments

Location	Formula	
Inside	Part x part = part x part	
Outside	Outside x whole = Outside x whole	
Outside	Outside x whole = Outside x whole	

Tangents

Circles

Angles

	Γ			
Angle	Vertex Location	Sides	Formula (arcs)	Picture
Central	Center	Radii	= arc	arc
Inscribed	Edge	Chords	= ½ arc	arc
Interior	Inside (not at center)	Chords	= ½ (arc1+arc2)	arc1 arc2
Exterior	Outside	Secants Tangents	= ½ (Far arc – Near arc)	FA

Surface Area and Volume notes

Use and read carefully the formula sheet

- B area of the base usually a square base in pyramids
- b base of triangle or trapezoids

Pythagorean Theorem used in

Cones:

Slant height ² = radius ² + height ²

Pyramids:

Slant height 2 = $(1/2 \text{ side})^2$ + height 2