Name:     ID: 
 
Email: 

Precalculus Final Exam

Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

The measure of the angle 330mc001-1.jpg in standard position is given. Find two positive angles and two negative angles that are coterminal with the given angle.
a.
426mc001-2.jpg, 786mc001-3.jpg, –294mc001-4.jpg, –654mc001-5.jpg
c.
710mc001-10.jpg, 1020mc001-11.jpg, –50mc001-12.jpg, –360mc001-13.jpg
b.
670mc001-6.jpg, 1060mc001-7.jpg, –70mc001-8.jpg, –345mc001-9.jpg
d.
690mc001-14.jpg, 1050mc001-15.jpg, –30mc001-16.jpg, –390mc001-17.jpg
 

 2. 

The measure of the angle mc002-1.jpg in standard position is given. Find minimal positive angle and maximal negative angles that are coterminal with the given angle.
a.
mc002-2.jpg
b.
mc002-3.jpg
c.
mc002-4.jpg
d.
mc002-5.jpg
 

 3. 

What is the side labeled x equal to, if y = 22?

mc003-1.jpg
a.
11
b.
22
c.
44
 

 4. 

A 109 ft tree casts a shadow that is 130 ft long. What is the angle of elevation of the sun?
a.
50mc004-1.jpg
b.
–50mc004-2.jpg
c.
–40mc004-3.jpg
d.
40mc004-4.jpg
 

 5. 

Find the reference angle for the angle measuring 921mc005-1.jpg.
a.
111mc005-2.jpg
b.
21mc005-3.jpg
c.
201mc005-4.jpg
d.
–21mc005-5.jpg
 

 6. 

Find the reference angle for the angle measuring mc006-1.jpg.
a.
mc006-2.jpg
b.
mc006-3.jpg
c.
mc006-4.jpg
d.
mc006-5.jpg
 

 7. 

Write the following trigonometric expression in terms of sine and cosine, and then simplify.

cos x tan x
a.
sin x
b.
1
c.
tan x
d.
cos x
 

 8. 

Simplify the following trigonometric expression.

tan x cos x csc x
a.
sin x
b.
1
c.
cot x
d.
sin 2 x
 

 9. 

Find the exact value of the expression.

mc009-1.jpg
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
0
d.
mc009-4.jpg
e.
mc009-5.jpg
 

 10. 

Find the exact value of the expression.

mc010-1.jpg
a.
mc010-2.jpg
b.
mc010-3.jpg
c.
0
d.
mc010-4.jpg
e.
mc010-5.jpg
 

 11. 

Find the exact value of the expression.

mc011-1.jpg
a.
0
b.
mc011-2.jpg
c.
mc011-3.jpg
d.
mc011-4.jpg
e.
mc011-5.jpg
 

 12. 

For the function f whose graph is given, state the value of the given quantity, if it exists.

mc012-1.jpg
mc012-2.jpg
a.
3
b.
Does not exist.
c.
4
d.
5
e.
2
 

 13. 

Find the exact value of the expression.

mc013-1.jpg
a.
mc013-2.jpg
b.
0
c.
mc013-3.jpg
d.
mc013-4.jpg
 

 14. 

Find the exact value of the expression.

mc014-1.jpg
a.
mc014-2.jpg
b.
mc014-3.jpg
c.
mc014-4.jpg
d.
mc014-5.jpg
 

 15. 

Evaluate the expression by sketching a triangle.

mc015-1.jpg
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
 

 16. 

Evaluate the limit:

mc016-1.jpg.
a.
68
b.
96
c.
100
 

 17. 

Evaluate the limit:

mc017-1.jpg.
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
The limit does not exist.
 

 18. 

Find the slope of the tangent line to the graph of f at the point ( 1, 0 ).

f ( x ) = 3 + 5x – 8x 2
a.
–11
b.
–8
c.
–12
d.
–9
 

 19. 

Find an equation of the tangent line to the curve at x = -3.

mc019-1.jpg
a.
y = –5x – 9
c.
y = –4x – 27
b.
y = 5x – 27
d.
y = –4x + 9
 

 20. 

Sketch the graph of the piecewise defined function.

mc020-1.jpg
a.
mc020-2.jpg
d.
mc020-5.jpg
b.
mc020-3.jpg
e.
mc020-6.jpg
c.
mc020-4.jpg
 

 21. 

The graph of a function is sketched below.

mc021-1.jpg

Determine the interval on which the function is decreasing.
a.
mc021-2.jpg
b.
[1, 3]
c.
[–1, –1]
d.
mc021-3.jpg
e.
[–3, –1]
 

 22. 

The graph shows the depth of water W in a reservoir over a one-year period, as a function of the number of days x since the beginning of the year. What was the average rate of change in W between x = 100 and x = 200?

mc022-1.jpg
a.
–0.35
b.
–0.245
c.
–0.2
d.
–0.26
e.
–0.25
 

 23. 

Find the x- and y-intercepts of the rational function mc023-1.jpg.
a.
x-intercept (6, 0), y-intercept (0, –1)
b.
x-intercept (6, 0), y-intercept (0, –3)
c.
x-intercept (1, 0), y-intercept (0, 6)
d.
x-intercept (–1, 0), y-intercept (0, 6)
e.
x-intercept (–6, 0), y-intercept (0, 0)
 

 24. 

Find the horizontal and vertical asymptotes of the rational function mc024-1.jpg.
a.
horizontal asymptote y = 7; vertical asymptote x = 8
b.
horizontal asymptote y = 7; vertical asymptote x = –8
c.
horizontal asymptote y = 0; vertical asymptote x = –16
d.
horizontal asymptote y = 0; vertical asymptote x = –8
e.
horizontal asymptote y = 0; vertical asymptote x = 8
 

 25. 

The rabbit population on Mr. Jenkins' farm follows the formula: mc025-1.jpg.

For this formula, t > 0 is the time in months since the beginning of the year. What is the eventual population of rabbits?
a.
4500 rabbits
d.
5500 rabbits
b.
5750 rabbits
e.
6000 rabbits
c.
5000 rabbits
 

 26. 

Complete the table of values (to five decimal places) and use the table to estimate the value of the limit.

mc026-1.jpg

x
1.9
1.99
1.999
2.001
2.01
2.1
f(x)
      
a.
mc026-2.jpg
b.
6
c.
The limit does not exist.
d.
mc026-3.jpg
 

 27. 

Complete the table of values (to five decimal places) and use the table to estimate the value of the limit.

mc027-1.jpg

y
–0.1
–0.01
–0.001
0.001
0.01
0.1
f(y)
      
a.
0
b.
e
c.
1
d.
The limit does not exist.
 

 28. 

Use the following graph and any other graphing device that you need to determine whether the limit exists. If the limit exists, estimate its value to two decimal places.

mc028-1.jpg

mc028-2.jpg
a.
0.5
b.
Does not exist.
c.
1
d.
0
 

 29. 

Given that

mc029-1.jpg mc029-2.jpg.

Evaluate the limit:

mc029-3.jpg.
a.
8
b.
7
c.
3
d.
11
 

 30. 

If an arrow is shot upward on the moon with a velocity of 51 m/s its height (in meters) after t seconds is given by mc030-1.jpg. When will the arrow hit the moon? Round the result to the nearest thousandth if necessary.
a.
57.845
b.
57.956
c.
57.944
d.
57.955
e.
57.96
 

 31. 

A cardiac monitor is used to measure the heart rate of a patient after surgery. It compiles the number of heartbeats after t minutes. When the data in the table are graphed, the slope of the tangent line represents the heart rate in beats per minute. Find the average heart rate (slope of the secant line) over the time interval [ 40, 42 ].

t (min)
36
38
40
42
44
Heartbeats
2,536
2,664
2,808
2,940
3,070
a.
65
b.
2,339
c.
65.5
d.
66
 

Numeric Response
 

 32. 

Find the exact value of the trigonometric function at the given real number.

nr032-1.jpg

 

 33. 

Find the exact value of the trigonometric function at the given real number.

nr033-1.jpg

 

 34. 

Find the limit.

nr034-1.jpg

 

 35. 

A tank contains 4,000 L of pure water. Brine that contains 10 g of salt per liter of water is pumped into the tank at a rate of 25 L/min. The concentration of salt after t minutes (in grams per liter) is

nr035-1.jpg.

What happens to the concentration as nr035-2.jpg?

__________ g/L

 

Short Answer
 

 36. 

Find the degree measure of the angle with the given radian measure.

(a) sa036-1.jpg     (b) sa036-2.jpg

__________ sa036-3.jpg     __________ sa036-4.jpg
 

 37. 

Find the exact values of the six trigonometric ratios of the angle sa037-1.jpg in the triangle.Enter your answer as a fraction.

sa037-2.jpg

Find secsa037-3.jpg
 

 38. 

Find the reference angle for the given angle.

210sa038-1.jpg
 

 39. 

Find the reference angle for the given angle. (If needed, type pi for sa039-1.jpg in your answer)

sa039-2.jpg
 

 40. 

Find the exact value for each trigonometric function.

cos 150sa040-1.jpg
 

 41. 

Find the exact value for each trigonometric function.

sin sa041-1.jpg
 

 42. 

Find the value of tansa042-1.jpg from the information given.

sa042-2.jpg in quadrant II
 

 43. 

For the function f whose graph is given, state the value of the given quantity, if it exists.

sa043-1.jpg

(a) sa043-2.jpg   (c) sa043-3.jpg

(b) sa043-4.jpg   (d) sa043-5.jpg
 

 44. 

Find the limit.

sa044-1.jpg
 

 45. 

Find the limit.

sa045-1.jpg
 

 46. 

A ball is thrown across a playing field. Its path is given by the equation sa046-1.jpg, where x is the distance the ball has traveled horizontally, and y is its height above ground level, both measured in feet.

sa046-2.jpg

How far has it traveled horizontally when it hits the ground? Please round your answer to the nearest tenth.

__________ ft
 

 47. 

A manufacturer finds that the revenue generated by selling x units of a certain commodity is given by the function sa047-1.jpg, where the revenue R(x) is measured in dollars.

(a) What is the maximum revenue?
 

 48. 

The downward velocity of a falling raindrop at time t is modeled by the function

sa048-1.jpg.

Find the terminal velocity of the raindrop by evaluating sa048-2.jpg.
 

 49. 

A jet is flying through a wind that is blowing with a speed of 40 mi/h in the direction N 35º E. The jet has a speed of 714 mi/h in still air, and the pilot heads the jet in the direction N 50º E. Find the true speed of the jet.
 

 50. 

Comments/Concerns
 



 
         Start Over