Name: 
 

Pre-Calculus Handout:  Systems & Conics with Review



 1. 

Find the slope and y-intercept of the line and draw its graph.

mc001-1.jpg
 

 2. 

Find the slope of the line through P(–9, –3) and Q(–5, –15).
 

 3. 

Determine the slope of the line which is sketched below.

mc003-1.jpg
a.
m = –5
b.
m = 1
c.
m = –4
d.
m = –10
e.
m = –2
 

 4. 

Sketch the graph of the function by first making a table of values.

mc004-1.jpg
a.
mc004-2.jpg
d.
mc004-5.jpg
b.
mc004-3.jpg
e.
mc004-6.jpg
c.
mc004-4.jpg
 

 5. 

Sketch the graph of the piecewise defined function.

mc005-1.jpg
 

 6. 

Sketch the graph of the piecewise defined function.

mc006-1.jpg
 

 7. 

What is the domain and range of the function that is graphed below?

mc007-1.jpg
a.
Domain: (–7, 6), Range: [–6, 6]
d.
Domain: [–7, 6], Range: mc007-3.jpg
b.
Domain: mc007-2.jpg, Range: [–6, 6]
e.
Domain: [–6, 6], Range: [–7, 6]
c.
Domain: [–7, 6], Range: [–6, 6]
 

 8. 

Determine the interval on which the function in the graph below is decreasing.

mc008-1.jpg
a.
[4, –1]
b.
[–7, –3]
c.
[–3, 6]
d.
[–2, 7]
e.
[6, 10]
 

 9. 

The graph of a function is given as follows:

mc009-1.jpg

Determine the average rate of change for the function between the indicated values of the variable.
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
mc009-4.jpg
d.
mc009-5.jpg
e.
mc009-6.jpg
 

 10. 

What is the average rate of change of the function mc010-1.jpg between mc010-2.jpg?
 

 11. 

The graph of the function y = –x 2 + 4x is:

mc011-1.jpg

Find the coordinates of its vertex and its intercepts.
 

 12. 

The graph of the function y = x 2 – 6x + 8 is:

mc012-1.jpg

Find the coordinates of its vertex and its intercepts.
 

 13. 

Find the maximum or minimum value of the function.

nr013-1.jpg

 

 14. 

The graph of a quadratic function sa014-1.jpg is given.


(a) Find the coordinates of the vertex.

(__________, __________)

(b) Find the maximum or minimum value of f.
 

 15. 

Solve the system, or show that it has no solution. If the system has infinitely many solutions, express them in the ordered-pair form.

mc015-1.jpg
a.
The system has no solution.
b.
x = 1, y = 3
c.
x = 0, y = –4
d.
mc015-2.jpg
e.
The system has infinitely many solutions. mc015-3.jpg
 

 16. 

Solve the system.

mc016-1.jpg
 

 17. 

Solve the system, or show that it has no solution. If the system has infinitely many solutions, express them in the ordered-pair form.

sa017-1.jpg
 

 18. 

Calculator Allowed:  Solve the System

mc018-1.jpg
 

 19. 

Calculator Allowed: Find the complete solution of the linear system:

sa019-1.jpg
 

 20. 

Calculator Allowed:  In a suspension bridge the shape of the suspension cables is parabolic. The bridge shown in the figure has towers that are 800 m apart, and the lowest point of the suspension cables is 200 m below the top of the towers. Find the equation of the parabolic part of the cables, placing the origin of the coordinate system at the vertex.

NOTE: This equation is used to find the length of cable needed in the construction of the bridge.

sa020-1.jpg
 

 21. 

Find the vertices of the ellipse.

mc021-1.jpg
a.
(–6, 0) and (6, 0)
b.
none of these
c.
(–1, 0) and (1, 0)
d.
(–8, 0) and (8, 0)
e.
(–10, 0) and (10, 0)
 

 22. 

Calculator Allowed:  A "sunburst" window above a doorway is constructed in the shape of the top half of an ellipse, as shown in the figure. The window is 15 in. tall at its highest point and 60 in. wide at the bottom. Find the height of the window 25 in. from the center of the base.

nr022-1.jpg

Please round your answer to the nearest tenth.

__________ in.

 

 23. 

Find the vertices of the hyperbola.

mc023-1.jpg
 
 
Simplify the expression. Write your answer using only positive exponents.
 

 24. 

mc024-1.jpg
a.
mc024-2.jpg
c.
mc024-4.jpg
b.
mc024-3.jpg
d.
mc024-5.jpg
 

 25. 

mc025-1.jpg
 

 26. 

mc026-1.jpg
 
 
Solve the equation.
 

 27. 

mc027-1.jpg
 

 28. 

mc028-1.jpg
 
 
Factor the polynomial completely.
 

 29. 

mc029-1.jpg
 

 30. 

The graph of mr030-1.jpg is shown. Use the graph to identify the factors of mr030-2.jpg.
mr030-3.jpg
 a.
mr030-4.jpg
 d.
mr030-7.jpg
 b.
mr030-5.jpg
 e.
mr030-8.jpg
 c.
mr030-6.jpg
 

 31. 

Write a linear function f with the values mc031-1.jpg.
 
 
Evaluate the expression.
 

 32. 

mc032-1.jpg
a.
mc032-2.jpg
b.
mc032-3.jpg
c.
7
d.
–7
 

 33. 

mc033-1.jpg
a.
5
c.
not a real number
b.
–375
d.
–5
 

 34. 

mc034-1.jpg
 

 35. 

Which expression is different?
a.
mc035-1.jpg
b.
mc035-2.jpg
c.
mc035-3.jpg
d.
mc035-4.jpg
 

 36. 

Which is a factor of the trinomial mc036-1.jpg?
a.
mc036-2.jpg
b.
mc036-3.jpg
c.
mc036-4.jpg
d.
mc036-5.jpg
 

 37. 

Does mc037-1.jpg have a maximum or minimum? Find the value.
a.
maximum; 1
b.
minimum; 1
c.
maximum; mc037-2.jpg
d.
minimum; mc037-3.jpg
 
 
Choose the quadratic function in standard form whose graph satisfies the given condition(s).
 

 38. 

x-intercepts: –1 and –5
a.
mc038-1.jpg
c.
mc038-3.jpg
b.
mc038-2.jpg
d.
mc038-4.jpg
 

 39. 

Which of the following describe the equation mr039-1.jpgmr039-2.jpgmr039-3.jpgmr039-4.jpg?
 a.
maximum value: mr039-5.jpg
 b.
axis of symmetry: mr039-6.jpg mr039-7.jpg
vertex: (mr039-8.jpg, –18)
 c.
minimum value: mr039-9.jpg
 d.
axis of symmetry: mr039-10.jpg mr039-11.jpg
vertex: (mr039-12.jpg, mr039-13.jpg)
 e.
minimum value: –18
 f.
mr039-14.jpg
domain: mr039-15.jpg mr039-16.jpg
range: all real numbers
 g.
axis of symmetry: mr039-17.jpg –20
vertex: (–20, –18)
 h.
mr039-18.jpg
domain: all real numbers
range: mr039-19.jpg mr039-20.jpg
 



 
Check Your Work     Start Over