5.4 - Exponential Functions : Differentiation & Integration

- What will you learn?
- Develop properties of the natural exponential function
- Differentiate natural exponential functions
- Integrate natural exponential functions

The Natural Exponential Function

The inverse of the natural logarithmic function $f(x) = \ln x$ is called the natural exponential function and is denoted by

$$f^{-1}(x) = e^x$$

That is,

$$y = e^x$$
 iff $x = \ln y$

Inverse relationship: Remember?

In $e^x = x$

and

 $e \ln x = x$

Example 1 - Solving Exponential Equations

Solve $7 = e^{x+1}$

Example 2 - Solving a Logarithmic Equation

Solve ln(2x-3) = 5

Theorem 5.10 - Operations with Exponential Functions

Let a and b be any real numbers.

1.
$$e^a e^b = e^{a+b}$$

$$2. \quad \frac{\underline{e}^a}{e^b} = e^{a-b}$$

Properties of the Natural Exponential Function

- 1. Domain : $(-\infty,\infty)$ Range : $(0,\infty)$
- 2. Continuous Increasing 1:1
- 3. Concave UP
- 4. $\lim_{x \to \infty} e^x = 0$ and $\lim_{x \to \infty} e^x = \infty$

Derivatives of Exponential Functions

||||||| IT IS ITS OWN DERIVATIVE !!!!!!!

Let u be a differentiable function of x.

1.
$$\frac{d}{dx}$$
 [e^x] = e^x

2.
$$\frac{d}{dx}$$
 [e^u] = $e^u \frac{du}{dx}$

Example 3 - Differentiating Exponential Functions

a.)
$$\frac{d}{dx}$$
 [e^{2x-1}]

b.)
$$\frac{d}{dx}$$
 [e^{-3/x}]

Example 4 - Locating Relative Extrema

Find the relative extrema of $f(x) = x e^{x}$

Example 5 - The Standard Normal Probability Density Function

Show that the standard normal probability density function has points of inflections when $x = \pm 1$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Example 6 - Shares Traded

The number *y* of shares traded (in millions) on the NYSE from 1990-2002 can be modeled by

$$y = 36,663 e^{0.1902t}$$

where t represents the year, with t = 0 corresponding to 1990. At what rate was the number of shares traded changing in 1998?

Integrals of Exponential Functions

1.
$$\int e^{x} dx = e^{x} + c$$

2. $\int e^{u} du = e^{u} + c$

2.
$$\int e^{u} du = e^{u} + c$$

Example 7 - Integrating Exponential Functions

Find
$$\int e^{3x+1} dx$$

Example 8 - Integrating Exponential Functions

Find
$$\int 5x e^{-x^2} dx$$

Example 9 - Integrating Exponential Functions

a.)
$$\int \frac{e^{1/x}}{x^2} dx$$

b.)
$$\int \sin x e^{\cos x} dx$$

Example 10 - Finding Areas Bounded by Exponential Functions

a.)
$$\int_0^1 e^{-x} dx$$

b.)
$$\int_0^1 \frac{e^x}{1+e^x} dx$$

c.)
$$\int_{-1}^{0} [e^{x} \cos(e^{x})] dx$$