5.5 Bases Other Than e and Applications

- Define exponential functions that have bases other than e
- Differentiate and integrate exponential functions that have bases other than e
- Use exponential functions to model compound interest and exponential growth

Bases Other Than e

The base of the natural exponential function is *e*. This "natural" base can be used to assign meaning to a general base *a*.

Definition of Exponential Function to Base *a*

If a is a positive real number ($a \neq 1$) and x is any real number, then the exponential function to the base a is denoted by a^x and is defined by

$$a^x = e^{(\ln a)x}$$

If a = 1, then $y = 1^x = 1$ is a constant function.

These function follow the usual laws of exponents

$$a^x a^y =$$

$$\frac{a}{a}^{x} =$$

$$(a^x)^y =$$

Example 1- Radioactive Half-Life Model

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14. How much will be present in 10,000 years?

Definition of Logarithmic Function to Base a

If a is a positive real numbers ($a \ne 1$) and x is any positive real number, then the logarithmic function to the base a is denoted by $\log_a x$ and is defined as

$$\log_a x = \frac{1}{\ln a} \ln x$$

Remember Properties of logs???

- 1. $\log_a 1 =$
- 2. log a xy
- 3. $\log_a x^n =$
- 4. $\log_a \frac{X}{y} =$

Properties of Inverse Functions

- 1. $y = a^x$ iff $x = \log_a y$
- 2. $a^{\log_a x} = x$, for x > 0
- 3. $\log_a a^x = x$, for all x

Example 2 - Bases Other Than e

Solve for x in each equation

a.)
$$3^{x} = \frac{1}{81}$$

b.)
$$\log_2 x = -4$$

Differentiation & Integration

You have 3 options for differentiation

- 1. Use definitions of $a^x = \log_a x$ and use rules for natural exponential & logarithmic functions
- 2. Use logarithmic differentiation
- 3. Use the following rules for bases other than e

Theorem 5.13 - Derivatives for Bases Other Than e

Let a be a positive real number ($a \neq 1$) and let u be a differentiable function of x

1.
$$\frac{d}{dx} [a^x] = (\ln a) a^x$$

2.
$$\frac{d}{dx}$$
 [a"] = (ln a) a" $\frac{du}{dx}$

3.
$$\frac{d}{dx} [\log_a x] = \frac{1}{(\ln a) x}$$

1.
$$\frac{d}{dx} [a^x] = (\ln a) a^x$$
2.
$$\frac{d}{dx} [a^u] = (\ln a) a^u \frac{du}{dx}$$
3.
$$\frac{d}{dx} [\log_a x] = \frac{1}{(\ln a) x}$$
4.
$$\frac{d}{dx} [\log_a u] = \frac{1}{(\ln a) u} \frac{du}{dx}$$

Example 3 - Differentiating Functions to Other Bases

Find the derivative of each function

a.)
$$y = 2^x$$

b.)
$$y = 2^{3x}$$

c.)
$$y = \log_{10} \cos x$$

Integrating Exponential Functions to Other Bases

2 Options

- 1. Convert to base e, then integrate
- 2. Integrate directly using following formula

$$\int a^{x} dx = \left(\frac{1}{\ln a}\right) a^{x} + C$$

Example 4 - Integrating an Exponential Function to Another Base Find

$$\int 2^x dx$$

Theorem 5.14 - The Power Rule for Real Exponents

Let a be any real number and let u be a differentiable function of x

1.
$$\frac{d}{dx} [x^n] = n x^{n-1}$$

2.
$$\frac{d}{dx} [u^n] = n u^{n-1} \frac{du}{dx}$$

Example 5 - Comparing Variables and Constants

a.)
$$\frac{d}{dx}$$
 [e e] =

b.)
$$\frac{d}{dx} [e^x] =$$

c.)
$$\frac{d}{dx} [x^e] =$$

d.)
$$y = x^{x}$$

Applications of Exponential Functions

Remember.....

$$A = P \left(1 + \frac{r}{n} \right)^n$$

Theorem 5.15 - A Limit Involving e

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = \lim_{x \to \infty} (\frac{x+1}{x})^x = e$$

Summary of Compounded Interest Formulas

Let P = amount deposited
t = number of years
A = Balance after t years
r = annual interest rate (decimal)
N = numbers of compoundings per year

Periodic Compounding

$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

Continuous Compounding

$$A = Pe^{rt}$$

Example 6 - Comparing Continuous and Quarterly Compounding A deposit is made in an account that pays an annual interest rate of 5%.
Find the balance in the account at the end of 5 years if the interest is compounded
a.) quarterly
b.)monthly
c.) continuously

Example 7 - Bacterial Culture Growth

A bacterial culture is growing according to the logistic growth function

$$y = \frac{1.25}{1+0.25 e^{-0.4t}}$$
 $t \ge 0$

where y is the weight of the culture in grams and t is the time in hours. Find the weight of the culture after

- a.) 0 hours
- b.) 1 hour
- c.) 10 hours

What is the limit as t approaches infinity?