<u>Section 2.2 - Basic Differentiation Rules & Rates of Change</u>

Calc

- Find the derivative using the Constant Rule
- Find the derivative using the Power Rule
- Find the derivative using the Constant Multiple Rule
- Find the derivative using the Sum & Difference Rules
- Find the derivative of the sine and cosine functions
- Use derivatives to find rates of change

The Constant Rule

The derivative of a constant function is 0. That is, if c is a real number, then

$$\frac{d}{dx}[c]=0$$

Example 1 - Using the Constant Rule

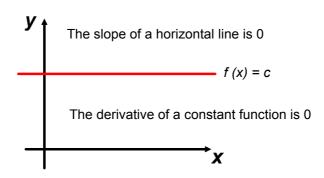
Function

a.)
$$y = 7$$

b.)
$$f(x) = 0$$

c.)
$$s(t) = -3$$

d.)
$$y = k_{\Pi}^2$$
, k is a constant



The Power Rule

If n is a rational number, then the function $f(x) = x^n$ is differentiable and

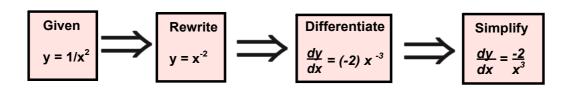
$$\frac{d}{dx} [x^n] = n x^{n-1}$$

For f to be differentiable at x = 0, n must be a number s.t. x^{n-1} is defined on an interval containing 0.

Example 2 - Using the Power Rule

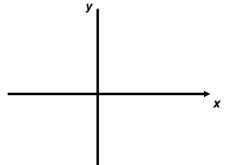
Function

- a.) $f(x) = x^3$
- b.) $g(x) = \sqrt[3]{x}$
- c.) $y = 1/x^2$



Example 3 - Finding the Slope of a Graph

Find the slope of the graph of $f(x) = x^4$ when



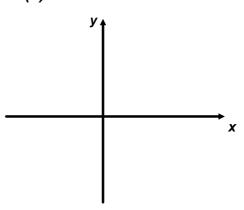
a.)
$$x = -1$$

b.)
$$x = 0$$

c.)
$$x = 1$$

Example 4 - Finding the Equation of a Tangent Line

Find an equation of the tangent line to the graph of $f(x) = x^2$ when x = 2.



The Constant Multiple Rule

If f is a differentiable function and c is a real number, then cf is also differentiable and $\frac{d}{dx} [cf(x)] = cf'(x)$.

Example 5 - Using the Constant Multiple Rule

Function

a.)
$$y = \frac{2}{x}$$

b.)
$$f(t) = \frac{4t^2}{5}$$

c.)
$$y = \sqrt{x}$$

d.)
$$y = \frac{1}{2\sqrt[3]{\chi^2}}$$

e.)
$$y = \frac{-3x}{2}$$

Example 6 - Using Parentheses When Differentiating

Original Function

Rewrite

Differentiate

Simplify

a.)
$$y = \frac{5}{2x^3}$$

b.)
$$y = \frac{5}{(2x)^3}$$

c.)
$$y = \frac{7}{3x^{-2}}$$

d.)
$$y = \frac{7}{(3x)^{-2}}$$

The Sum & Difference Rules

The sum (or difference) of two differentiable functions f and g is itself differentiable.

Moreover, the derivative of f + g (or f - g) is the sum (or difference) of the derivatives of f and g.

$$\frac{d}{dx} [f(x) + g(x)] = f'(x) + g'(x)$$
 Sum Rule

$$\frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x)$$
 Difference Rule

Example 7 - Using Sum & Difference Rules

Function

a.)
$$f(x) = x^3 - 4x + 5$$

b.)
$$g(x) = -\frac{x^4}{2} + 3x^3 - 2x$$

Derivatives of Sine & Cosine Functions

$$\frac{d}{dx}$$
 [$\sin x$] = $\cos x$

$$\frac{d}{dx} [\cos x] = -\sin x$$

Example 8 - Derivatives Involving Sines & Cosines

Function

a.)
$$y = 2 \sin x$$

b.)
$$y = \frac{\sin x}{2} = \frac{1}{2} \sin x$$

c.)
$$y = x + \cos x$$

Rates of Change

Position Function

The function s that gives the position (relative to the origin) of an object as a function of time t

If, over a period of time Δt , the object changes its position by the amount $\Delta s = s(t + \Delta t) - s(t)$, then by the familiar formula

The <u>Average Velocity</u> is $\frac{\text{Change in Distance}}{\text{Change in Time}} = \frac{\Delta S}{\Delta t}$

Example 9 - Finding Average Velocity of a Falling Object

If a billiard ball is dropped from a height of 100 feet, its height s at time t is given by the position function

$$s = -16t^2 + 100$$

where s is measured in feet and t is measured in seconds. Find the average velocity over each of the following time intervals.

a.) [1, 2]

b.) *[1, 1.5]*

c.) [1, 1.1]

Suppose you wanted to find the *instantaneous velocity* (or simply the velocity) of the object when t = 1. You can approximate the velocity at t = 1 by calculating the average velocity over a small interval $[1, 1+\Delta t]$.

$$v(t) = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t} = s'(t)$$
 Velocity Function

$$V(t) = s'(t)$$
 The velocity function is the first derivative of the position function

<u>Velocity</u> can be positive, negative or zero <u>Speed</u> is the absolute value of velocity - only positive!

Position of a free-falling object under the influence of gravity (excluding air resistance)

$$s(t) = gt^2 + v_0t + s_0$$
 s_0 - initial height
 g - acceleration due to gravity

Earth's gravity - -32 ft/sec² or -9.8m/sec²

At t = 0, a diver jumps from a platform diving board that is 32 feet above the water. The position of the diver is

$$s(t) = -16t^2 + 16t + 32$$

where s is measured in feet and t is measured in seconds

a.) When does the diver hit the water?

b.) What is the diver's velocity at impact?