2.3 Product & Quotient Rules and Higher Order Derivatives

Calc

What will you learn?

- Find the derivative using the Product Rule
- Find the derivative using the Quotient Rule
- Find the derivative of a trig function
- Find a higher-order derivative of a function

The Product Rule

The product of two differentiable function f and g is itself differentiable. Moreover, the derivative of fg is the first function times the derivative of the second, plus the second function times the derivative of the first.

$$\frac{d}{dx} [f(x)g(x)] = f(x) g'(x) + g(x) f'(x)$$

Example 1 - Using the Product Rule

Find the derivative of $h(x) = (3x - 2x^2)(5 + 4x)$

Example 2 - Using the Product Rule Find the derivative of

$$y = 3x^2 \sin x$$

Example 3 - Using the Product Rule

Find the derivative of

$$y = 2x \cos x - 2 \sin x$$

Quotient Rule

The quotient f/g of two differentiable function f and g is itself differentiable at all values of x for which $g(x) \neq 0$.

Moreover, the derivative of f/g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$\frac{d}{dx} \left[\int \frac{f(x)}{g(x)} \right] = \frac{g(x) f'(x) - f(x) g'(x)}{[g(x)]^2} \qquad g(x) \neq 0$$

Example 4 - Using the Quotient Rule

Find the derivative of

$$y = \frac{5x - 2}{x^2 + 1}$$

Example 5 - Rewriting Before Differentiating

Find an equation of the tangent line to the graph of

$$f(x)=\frac{3-(1/x)}{x+5}$$

Example 6 - Using the Constant Multiple Rule

Original Function

Rewrite

Differentiate

Simplify

a.)
$$y = \frac{x^2 + 3x}{6}$$

b.)
$$y = \frac{5x^4}{8}$$

c.)
$$y = \frac{-3 (3x - 2x^2)}{7x}$$

d.)
$$y = \frac{9}{5x^2}$$

Example 7 - Proof of the Power Rule (Negative Integer Exponents)

If n is a negative integer, there exists a positive integer k s.t. n = -k.

$$\frac{d}{dx} [x^n] = \frac{d}{dx} \left[\frac{1}{x^k} \right]$$

Derivatives of Trig Functions

$$\frac{d}{dx}$$
 [tan x] = $\sec^2 x$

$$\frac{d}{dx} [\cot x] = -\csc^2 x$$

$$\frac{d}{dx}$$
 [sec x] = sec x tan x

$$\frac{d}{dx}$$
 [csc x] = -csc x cot x

Example 8 - Differentiating Trig Functions

Find the derivative

a.)
$$y = x - \tan x$$

b.)
$$y = x \sec x$$

Example 9 - Different Forms of a Derivative

Differentiate both forms of

$$y = \frac{1 - \cos x}{\sin x} = \csc x - \cot x$$

First form

Second form

Higher-Order Derivatives

First Derivative	у',	f '(x)	<u>dy</u> dx	$\frac{d}{dx}[f(x)]$	<i>D_x[y]</i>
Second Derivative	у",	f "(x)	$\frac{d^2y}{dx^2}$	$\frac{d^2}{dx^2} [f(x)]$	$D_x^2[y]$
Third Derivative	у''',	f '''(x)	$\frac{d^3y}{dx^3}$	$\frac{d^3}{dx^3} [f(x)]$	D _x ³ [y]
Fourth Derivative	y ⁽⁴⁾ ,	$f^{(4)}(x)$	$\frac{d^4y}{dx^4}$	$\frac{d^4}{dx^4} [f(x)]$	D _x ⁴ [y]
nth Derivative	y ⁽ⁿ⁾ ,	$f^{(n)}(x)$	$\frac{d^n y}{dx^n}$	$\frac{d^n}{dx^n}[f(x)]$	$D_x^n[y]$

Example 10- Finding Acceleration Due to Gravity

$$s(t)$$
 Position
 $s'(t) = v(t)$ Velocity
 $s''(t) = v'(t) = a(t)$ Acceleration

Because the moon has no atmosphere, a falling object on the moon encounters no air resistance,. In 1971, astronomer David Scott demonstrated that a feather and a hammer fall at the same rate on the moon.

The position function for each of these falling objects is given by

$$s(t) = -.81t^2 + 2$$

where s(t) is the height in meters and t is the time in seconds. What is the ratio of Earth's gravitational force to the moon's?