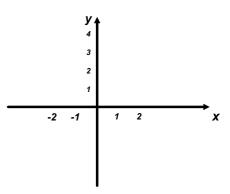
3.7 Optimization Problems

• What will you learn?

• Solve applied minimum and maximum problems

Example 1 - Finding Maximum VolumeA manufacturer wants to design an open box having a square base and a surface area of 108 square inches.

What dimensions will produce a box with maximum volume?


Guidelines for Solving Applied Min & Max Problems

- Identify all <u>given</u> quantities
 Identify what you're asked to <u>find</u>
 Make a sketch
- 2. Write a PRIMARY EQUATION for the quantity that is to be maximized or minimized
- 3. Reduce the primary equation to a SINGLE INDEPENDENT VARIABLE

This may require the use of a SECONDARY EQUATION relating the independent variable in the primary equation

- 4. Determine the FEASIBLE DOMAIN of the primary equation
- 5. Determine the desired max or min by using calculus techniques

Example 2 - Finding MINIMUM DISTANCE Which points on the graph of $y = 4 - x^2$ are closest to the point (0, 2)?

Example 3 - Finding MINIMUM LENGTH

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart.

They are to be stayed by two wires, attached to a single stake, running from ground level to the top of each post.

Where should the stake be placed to use the least amount of wire?

Example 4 - Finding MINIMUM AREA

A rectangular page is to contain 24 square inches of print.

The margins at the top and the bottom of the page are to be $1\frac{1}{2}$ inches.

The margins on the left and the right are to be 1 inch.

What should the dimensions of the page be so that the least amount of paper is used?

Example 5 - AN ENDPOINT MAXIMUM

Four feet of wire is to be used to form a square and a circle.

How much of the wire should be used for the square and how much should be used for the circle to enclose the maximum total area?