3.9 Differentials

- What will you learn?
- Understand the concept of tangent line approximation
- Compare the value of the differential dy, with the actual change in y, Δy
- Estimate the propagated error using a differential
- Find the differential of a function using the differentiation formula

Tangent Line Approximation

(Linear Approximation of f at c)

Using a tangent line to a graph to approximate the graph

Consider a function f that is differentiable at cThe equation of the tangent line a the point (c, f(c)) is given by

$$y - f(c) = f'(c)(x - c)$$

 $y = f(c) + f'(c)(x - c)$
Solve for y

- Because c is a constant, y is a linear function of x
- By restricting the values of *x* to be sufficiently close to *c*, the values of *y* can be used as approximations (to any desired accuracy) of the values of the functions *f*
- As $x \rightarrow c$, the limit of y is f(c)

Example 1 - Using a Tangent Line Approximation

Find the tangent line approximation of

$$f(x) = 1 + \sin x$$

at the point (0, 1).

Then use the table to compare the y-values of the linear function with those of f(x) on an open interval containing x = 0

	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
f(x)							
y = 1 + x							

Differentials

$$y = f(c) + f'(c) \underbrace{(x - c)}_{\Delta x}$$
Tangent line at (c, f(c))

When Δ_X is small, Δy can be approximated as shown below

$$\Delta y = f(c + \Delta x) - f(c)$$

$$\approx f'(c) \Delta x$$

Actual change in y

Approximate change in y

$$\Delta x \longrightarrow dx \longrightarrow the differential of x$$
 $f'(x) dx \longrightarrow dy \longrightarrow the differential of y$

Definition of Differentials

Let y = f(x) represent a function that is differentiable on an open interval containing x.

The differential of x (denoted by dx) is any nonzero real number.

The differential of y (denoted by dy) is

$$dy = f'(x) dx$$

Change in y

∆y ≈ dy

 $\triangle y \approx f'(x) dx$

Example 2 - Comparing Δy and Δx

Let
$$y = x^2$$

Find dy when x = 1 and dx = .01

Compare this value with Δy for x = 1 and Δx = .01

Error Propagation

Physicists and engineers tent to make liberal use of the approximation of $\triangle y$ by dy

Let x represent the <u>measured value</u> of a variable Let $x + \Delta x$ represent the <u>exact value</u>

Then Δ_X is the <u>error in measurement</u>

If the measured value is used to compute another value f (x), then the difference between $f(x + \Delta x)$ and f(x) is the propagated error.

Measurement Error $f(x + \Delta \hat{x}) - f(x) = \Delta \hat{y}$ Exact Value

Measured Value

Example 3 - Estimation of Error

The radius of a ball bearing is measured to be 0.7 inch. If the measurement is correct within 0.01 inch, estimate the propagated error in the volume V of the ball bearing

Calculating Differentials

Each of the differentiation rules can be written in differential form

$$du = u' dx$$

 $dv = v' dx$

Constant Multiple d[cu] = c du

Sum or Difference $d[u \pm \sqrt{J}] = du \pm dv$

Product d[uv] = u dv + v du

Quotient $d \left[\frac{u}{v} \right] = \frac{v \, du - u \, dv}{v^2}$

Example 4 - Finding Differentials

<u>Function</u> <u>Derivative</u> <u>Differential</u>

- a) $y = x^2$
- b) $y = 2 \sin x$
- c) $y = x \cos x$
- $d) \quad y = 1/x$

Example 5 - Finding the Differential of a Composite Function

$$y = f(x) = \sin 3x$$

Example 6 - Finding the Differential of a Composite Function

$$y = f(x) = (x^2 + 1)^{1/2}$$

Example 7 - Approximating Function Values

Use differentials to approximate $\sqrt{16.5}$