Calculus

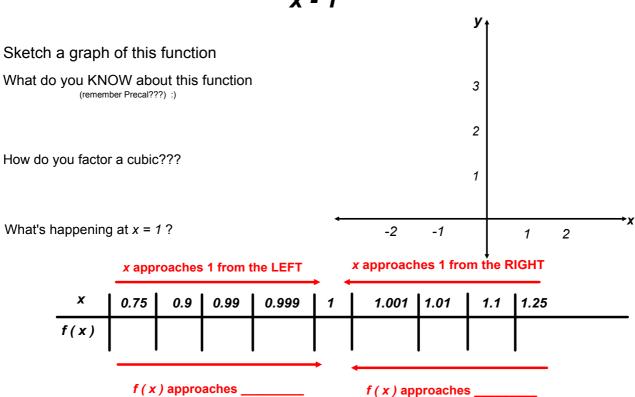
1.2 Finding the Limits Graphically & Numerically

- What will you learn?
- Estimate a limit using a numerical or graphical approach.
- Learn different ways that a limit can fail to exist.
- Study and use formal definition of limit.

An Intro to Limits

Given

$$f(x) = \frac{x^3 - 1}{x - 1}, \quad x \neq 1$$



The graph of f is a parabola that has a gap at the point (1, 3).

Although x cannot equal 1, you can move arbitrarily close to 1, and as a result f(x) moves arbitrarily close to 3

$$\lim_{x\to 1} f(x) = 3$$

$$\lim_{x\to c}f(x)=L$$

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the <u>LIMIT</u> of f(x) as x approaches c, is L.

Exploration

Given

$$\lim_{x\to 2} \frac{x^2 - 3x + 2}{x - 2}$$

1. Estimate the limit *numerically*

Using a table of values

2. Estimate the limit graphically

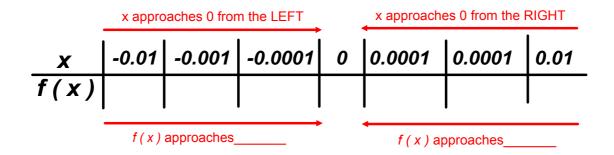
Using your graphing calculator

Example 1 - Estimating a Limit Numerically

Evaluate the function
$$f(x) = \frac{x}{\sqrt{x+1} - 1}$$

at several points near x = 0 and use the results to estimate the limit

$$\lim_{x\to 0} \frac{x}{\sqrt{x+1}-1}$$



NOTE: The function is UNDEFINED at x = 0, yet f(x) appears to approaching a limit as x approaches 0

☆ IMPORTANT ☆

The existence or nonexistence of f(x) at x = c

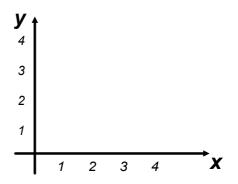
has no bearing on the

existence of the limit of f (x) as x approaches c!

Example 2 - Finding a Limit

Find the limit of f(x) as x approaches 2 where f is defined as:

$$f(x) = \begin{cases} 1, & x \neq 2 \\ 0, & x = 2 \end{cases}$$



Three - pronged approach to problem solving

(you need to know all of these for the AP Exam!)

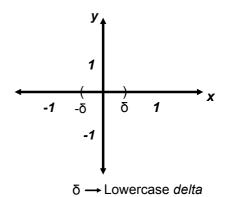
- 1. Numerical Approach ———
- 2. Graphical Approach ———
- 3. Analytic Approach ———

Limits That Fail to Exist

Example 3 - Behavior that Differs from the Right & Left

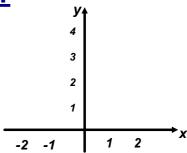
Show that the limit does not exist.

$$\lim_{x\to 0} \frac{|x|}{x}$$



Example 4 - Unbounded Behavior

$$\lim_{x\to 0} \frac{1}{x^2}$$



Example 5 - Oscillating Behavior

$$\lim_{x\to 0} \sin\frac{1}{x}$$

X	<u>2</u> П	<u>2</u> 3∏	<u>2</u> 5∏	<u>2</u> 7Π	<u>2</u> 9∏	<u>2</u> 11∏	<i>x</i> →0
sin (1/x)							

Be careful when examining sin (1/x) with graphing calc. - may not get a clear picture

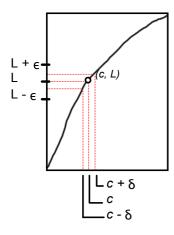
Limits that DNE

- 1. f(x) approaches a different number from the right of c than in approaches form the left of c
- 2. f(x) increases or decreases without bound as $x \rightarrow c$
- 3. f(x) oscillates between 2 fixed valuess as $x \rightarrow c$

A Formal Definition of Limit

If f(x) becomes arbitrarily close to a <u>single number L</u> as x approaches c from either side, then the limit of f(x) as x approaches c is L, written as

$$\lim_{x\to 0}f(x)=L$$



 ε - δ definition of limit

Definition of Limit

Let f be a function defined on an open interval containing c (except possibly at c) and L be a real number. The statement

$$\lim_{x\to c}f(x)=L$$

means that for each $\epsilon > 0$ there exists a $\delta > 0$ s.t. if

$$0 < |x-c| < \delta$$
 then $|f(x) - L| < \epsilon$

Some functions do not have limits as $x \rightarrow c$, but those that do cannot have two different limits as $x \rightarrow c$.

If the limit of a function exists, it is unique.