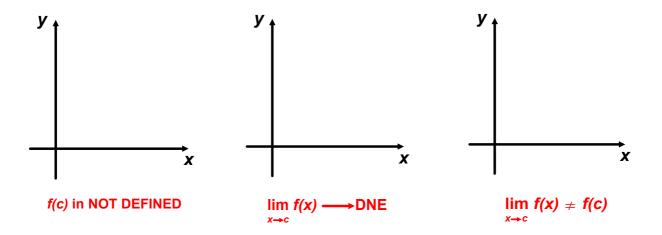
Calc

1.4 Continuity & One-Sided Limits

- What will you learn?

- Determine continuity at a point and continuity on an open interval
- Determine one-sided limits & continuity on a closed interval
- Use properties of continuity
- Understand & use Intermediate Value Theorem

Continuity at a Point and on an Open Interval



Definition of Continuity

Continuity at a Point

A function f is continuous at c if the following 3 conditions are met.

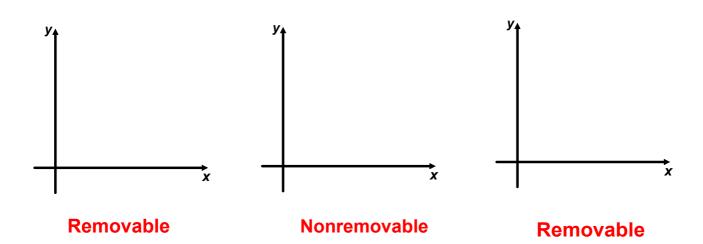
- 1. f(c) is defined
- 2. $\lim f(x)$ exists
- 3. $\lim_{x \to c} f(x) = f(c)$

Continuity on an Open Interval

A function is continuous on an open interval (a, b) if it <u>continuous at each point</u> in the interval.

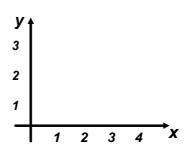
A function that is continuous on the entire real line $(-\infty, \infty)$ is <u>everywhere continuous</u>.

Discontinuities

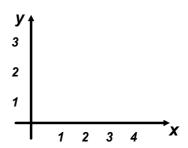


Example 1 - Continuity of a Function

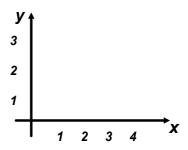
a.)
$$f(x) = \frac{1}{x}$$



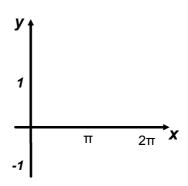
b.)
$$g(x) = \frac{x^2 - 1}{x - 1}$$



c.)
$$h(x) = \begin{cases} x+1, & x \leq 0 \\ x^2+1, & x > 0 \end{cases}$$



d.)
$$y = \sin x$$



One-Sided Limits & Continuity on a Closed Interval

Limit from the Right $\longrightarrow x$ approaches c from values greater than c

$$\lim_{x\to c^+}f(x)=L$$

Limit from the left \longrightarrow x approaches c from values less than c

$$\lim_{x\to c^{-}}f(x)=L$$

Example 2 - A One-Sided Limit

Find the limit of $f(x) = \sqrt{4 - x^2}$ as x approaches -2 from the right

Example 3 - The Greatest Integer Function

Find the limit of the greatest integer function f(x) = [[x]] as x approaches 0 from the left and right

Theorem 1.10 The Existence of a Limit

Let f be a function and let c and L be real numbers. The limit of f(x) as x approaches c is L iff

$$\lim_{x \to c^{-}} f(x) = L \qquad \text{and} \qquad \lim_{x \to c^{+}} f(x) = L$$

Definition of Continuity on a Closed Interval

A function f is continuous on the closed interval [a, b] if it is continuous on the open interval (a, b) and

$$\lim_{x \to a^{+}} f(x) = f(a) \qquad \text{and} \qquad \lim_{x \to b^{-}} f(x) = f(b)$$

The function is continuous from the right at *a* and continuous from the left at *b*

Example 4 - Continuity on a Closed Interval

Discuss the continuity of $f(x) = \sqrt{1 - x^2}$

Example 5 - Charles's Law & Absolute Zero

Theorem 1.11 Properties of Continuity

If b is a real number and f and g are continuous at x = c, then the functions are also continuous at c.

- 1. Scalar Multiple: bf
- 2. Sum & Difference : $f \pm g$
- 3. Product: fg
- 4. Quotient: $\frac{f}{g}$ if $g(c) \neq 0$

The following types of functions are continuous at every point in their domain:

- 1. Polyomial
- 2. Rational
- 3. Radical
- 4. Trig

Example 6 - Applying Properties of Continuity

By Theorem 1.11 - all of the following functions are continuous at every point in its domain

$$f(x) = x + \sin x$$

$$f(x) = 3 \tan x$$

$$f(x) = \frac{x^2 + 1}{\cos x}$$

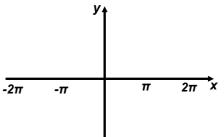
Theorem 1.12 - Continuity of a Composite Function

If g is continuous at c and f is continuous at g(c), then the composite function given by $(f \circ g)(x)$ is continuous at c.

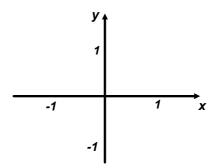
Example 7 - Testing for Continuity

Describe the intervals on which each function is continuous

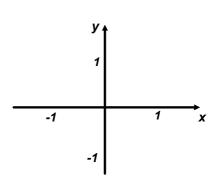
a.)
$$f(x) = \tan x$$



b.)
$$g(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$



c.)
$$h(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

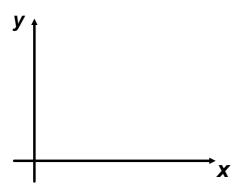


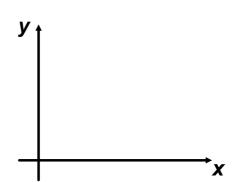
Theorem 1.13 The Intermediate Value Theorem

If f is continuous on the closed interval [a, b] and k is any number between f(a) and f(b), then there is at least one number c in [a, b] s.t.

$$f(c) = k$$

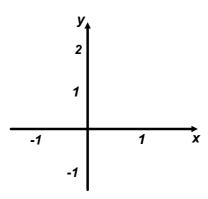
This is an $\frac{\text{existence theorem}}{\text{c}}$ - it tells you that at least one $\frac{\text{c}}{\text{c}}$ exists, but it does not give a method for finding $\frac{\text{c}}{\text{c}}$





Example 8- An Application of the IVT

Use the IVT to show that the polynomial function $f(x) = x^3 + 2x - 1$ has a zero in the interval [0, 1]



Bisection Method