Calc

1.5 Infinite Limits

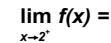
- Determine infinite limits from the left & from the right
- Find & sketch the VA's of the graph of a function

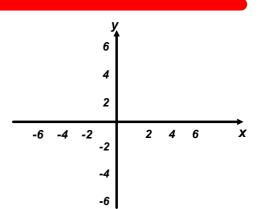
Infinite Limits

Let f be the function given by

$$f(x) = \frac{3}{x-2}$$

$$\lim_{x\to 2^-} f(x) =$$





x	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5
f(x)					?				

Definition of Infinite Limits

Let f be a function that is defined at every real number in some open interval containing c (except possibly c itself). The statement

$$\lim_{x\to c} f(x) = \infty$$

means that for each M > 0 there exists a $\delta > 0$ s.t. f(x) > M whenever $0 < x - c < \delta$. Similarly, the statement

$$\lim_{x\to c}f(x)=-\infty$$

means that for each N < 0 there exists a $\delta > 0$ s.t. f(x) < N whenever $0 < |x - c| < \delta$.

To define infinite limit from the left, replace $0 < |x - c| < \delta$ by $c - \delta < x < c$

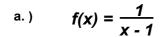
To define <u>infinite limit from the right</u>, replace $0 < |x - c| < \delta$ by c < x < c + b

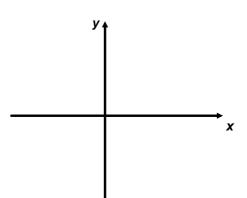
Be sure you see that the equal sign in the statement $\lim f(x) = \infty$ DOES NOT MEAN that the limit exists!

On the contrary, it tells you how the limit FAILS TO EXIST by denoting the unbounded behavior of f(x) as x approaches c

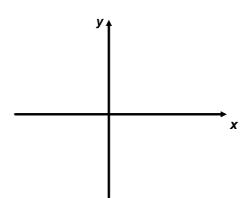
Example 1- Determining Infinite Limits from a Graph

Use the following graphs to determine the limit of each function as x approaches 1 from the left and from the right

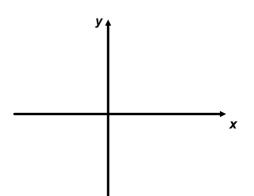




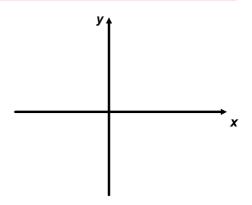
b.)
$$f(x) = \frac{1}{(x-1)^2}$$



c.)
$$f(x) = \frac{-1}{x-1}$$



d.)
$$f(x) = \frac{-1}{(x-1)^2}$$



Vertical Asymptotes

If f(x) approaches $\pm \infty$ as x approaches c from the right or left, then the line x = c is a <u>vertical asymptote</u> of the graph of f.

Theorem 1.14 - Vertical Asymptotes

Let f and g be continuous on an open interval containing c. If $f(c) \neq 0$, g(c) = 0, and there exists an open interval containing c s.t. $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by

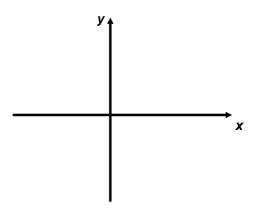
$$h(x) = \frac{f(x)}{g(x)}$$

has a vertical asymptote at x = c.

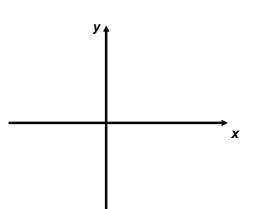
Example 2 - Finding Vertical Asymptotes

Determine all the vertical asymptotes of the graphs of each function

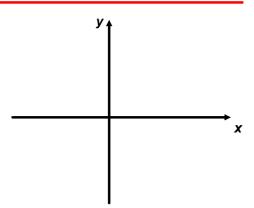
a.)
$$f(x) = \frac{1}{2(x+1)}$$



b.)
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$



c.)
$$f(x) = \cot x$$



Example 3 - A Rational Function with Common Factors

Determine all the V.A.'s of the graph of

$$f(x) = \frac{x^2 + 2x - 8}{x^2 - 4}$$

Example 4 - Determining Infinite Limits

Find each limit

$$\lim_{x \to 1^{-}} \frac{x^2 - 3x}{x - 1} \qquad \text{and} \qquad \lim_{x \to 1^{+}} \frac{x^2 - 3x}{x - 1}$$

Theorem 1.15 - Properties of Infinite Limits

Let c and L be real numbers and let f and g be functions s.t.

$$\lim_{x\to c} f(x) = \infty \qquad \text{and} \qquad \lim_{x\to c} g(x) = \lfloor$$

- 1. Sum or Difference $\lim_{x \to a} [f(x) \pm g(x)] = \infty$
- 2. Product $\lim_{x\to c} [f(x)g(x)] = \infty, \quad L>0$

$$\lim_{x\to c} [f(x)g(x)] = -\infty, \quad L < 0$$

3. Quotient $\lim_{x\to c} \frac{g(x)}{f(x)} = 0$

Similar properties hold for on-sided limits and for functions for which the limit of f(x) as x approaches c is $-\infty$

Example 5 - Determining Limits

- a. Because $\lim_{x\to 0} 1 = 1$ and $\lim_{x\to 0} \frac{1}{x^2} = \infty$, you can write
- b. Because $\lim_{x \to 1^-} (x^2 + 1) = 2$ and $\lim_{x \to 1^-} \cot_{TX} = -\infty$, you can write
- c. Because $\lim_{x\to 0^+} 3 = 3$ and $\lim_{x\to 0^+} \cot x = \infty$, you can write