Definition of Limit

If f(x) becomes arbitrarily close to a unique number L as x approaches c from either side, the limit of f(x) as x approaches c is L.

$$\lim_{x\to c} f(x) = L$$

Example 2 - Estimating a Limit

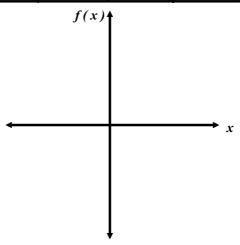
Use a table to estimate numerically the limit:

$$\lim_{x\to 2} (3x-2)$$

Approaching 2 from the left

Approaching 2 from the right

x	1.9	1.99	1.999	2.0	2.001	2.01	2.1
f(x)				?			



See p. 750; exercise 3

Example 3 - Estimating a Limit Numerically

Use a table to estimate numerically the limit:

$$\lim_{x\to 0} \frac{x}{\sqrt{x+1}} - 1$$

approaching 0 from left $x = -0.01 \quad -0.0001 \quad 0 \quad 0.0001 \quad 0.0001 \quad 0.001$ f(x) f(x)

See p. 750; exercise 5

Note: f(x) has a limit when $x\rightarrow \theta$ even though the function is not defined at $x=\theta$

The existence or nonexistence of f(x) at x = c has NO bearing on the limit of f(x) as $x \rightarrow c$

Example 4 - Using a Graphing Calculator to Find a Limit

Estimate the limit: $\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1}$

Numerical

Graphical

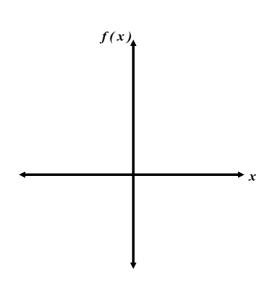
Table Feature

See p. 750; exercise 7

Example 5 - Using a Graph to Find a Limit

Find the limit of f(x) as x approaches 3, where f is defined as

$$f(x) = \begin{cases} 2, & x \neq 3 \\ 0, & x = 3 \end{cases}$$

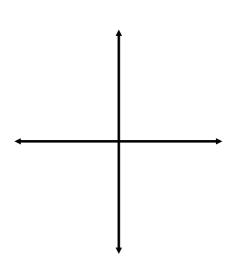


See . p 750; exercise 15

Limits that Fail to Exist

Example 6 - Comparing Left and Right Behavior Show that the limit does not exist

$$\lim_{x\to 0}\frac{|x|}{x}$$

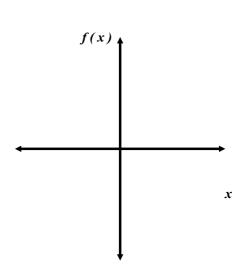


See p. 751; exercise 19

Example 7 - Unbounded Behavior

Discuss the existence of the limit:

$$\lim_{x\to 0} \frac{1}{x^2}$$



See p. 751; exercise 20

Example 8 - Oscillating Behavior

Discuss the existence of the limit:

$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$$

X	<u>2</u> π	<u>2</u> 3π	<u>2</u> 5π	<u>2</u> 7π	<u>2</u> 9π	<u>2</u> 11π	<i>x</i> →0
$sin\left(\frac{1}{x}\right)$							

See p. 751; exercise 21

Conditions Under Which Limits Do NOT Exist

The limit of f(x) as $x\rightarrow c$ does not exist if any of the following conditions are true:

- 1. f(x) approaches a different number from the right side of c than it approaches from the left side of c
- 2. f(x) increases or decreases without bound as $x \rightarrow c$
- 3. f(x) oscillates between 2 fixed values as x-c

Properties of Limits and Direct Substitution

Sometimes the limit of f(x) as $x\rightarrow c$ is f(c)

Direct Substitution

$$\lim_{x\to c}f(x)=f(c)$$

Basic Limits

Let b and c be real numbers and let n be a positive integer,

1.
$$\lim_{x \to c} b = b$$

$$2. \lim_{x \to c} x = c$$

$$3. \lim_{x \to c} x^n = c^n$$

4.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{c}$$
 for n even and $c > 0$

Trig Functions can also be included in this list

ie)
$$\lim_{x \to \pi} \sin x = \sin \pi$$

= 0
 $\lim_{x \to \theta} \cos x = \cos \theta$
= 1

Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits:

$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} g(x) = K$

1. Scalar Multiple: $\lim_{x \to c} [bf(x)] = bL$

2. Sum or Difference $\lim_{x\to c} [f(x) \pm g(x)] = L \pm K$

3. Product: $\lim_{x\to c} [f(x)g(x)] = LK$

4. Quotient: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K} \qquad K \neq \emptyset$

5. Power: $\lim_{x \to c} [f(x)]^n = L^n$

Let
$$\lim_{x\to 3} f(x) = 7$$
 and $\lim_{x\to 3} g(x) = 12$

a.)
$$\lim_{x\to 3} [f(x) - g(x)] = -5$$

b.)
$$\lim_{x\to 3} [f(x)g(x)] = 84$$

c.)
$$\lim_{x\to 3} [g(x)]^{1/2} = 2\sqrt{3}$$

Example 9 - Direct Substitution & Properties of Limits Find each limit.

a.)
$$\lim_{x\to 4} x^2$$

b.)
$$\lim_{x\to 4} 5x$$

c.)
$$\lim_{x\to 9} \sqrt{x}$$

d.)
$$\lim_{x\to\pi} (x\cos x)$$

Limits of Polynomial & Rational Functions

1. If p is a polynomial function and c is a real number, then

$$\lim_{x\to c} p(x) = p(c)$$

2. If r is a rational function given by r(x) = p(x)/q(x), and c is a real number s.t. $q(c) \neq 0$, then

$$\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}$$

Example 10 - Evaluating Limits by Direct Substitution Find each limit.

a.)
$$\lim_{x\to 1} (x^2 + x - 6)$$

b.)
$$\lim_{x \to -1} \frac{(x^2 + x - 6)}{x + 3}$$

See p. 752; exercise 39