
15.2 Difference Ratio

Average Speed - $\frac{\Delta value \text{ of the function}}{\Delta value \text{ in time}}$

Average Rate of Change in value of a function f with respect to x

Rate of Change of
$$f$$
 at $x = a$

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

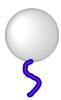
Difference Quotient
$$f(a+h)+f(a)$$

h

Derivative of
$$f$$
 at $y = a$

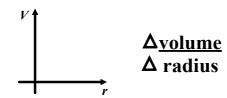
$$\frac{f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}}{f'(a+h) - f(a)}$$

Limit as h→0 of the difference quotient is called the derivative of f at x = a


A function is differentiable if the derivative of the function exists at each value in its domain.

A function is differentiable on an interval if the derivative of the function exists at each point on the interval

Blow up a balloon.


$$r = \text{radius in cm}$$

 $V = \text{volume in cm}^3$

$$V = \frac{4}{3} \pi r^3$$

When r changes \longrightarrow V changes

Find the rate at which V is changing with respect to r when r = 2

A farmer estimates that if harvests his crop now he will get 50 bushels per acre which he can sell for \$1.00 per bushel. Past experience suggests that his crop will increase at the rate of 5 bushels per week, but the price will probably decline at the rate of 5 cents per bushel per week. However, he can wait no longer than 6 weeks or his crop may be endangered. When should he harvest his crop so that he gets the maximum amount?

A = amount w = # of weeks he should wait

$$A = (50 + 5w) (1.00 - .05w)$$

$$A = 50 + 5w -2.5w -.25w2$$

$$A = .25(200+20w-10w-w2)$$

$$A = .25(200+10w-w2)$$