15-3 Differentiation

Definition of Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Find the derivative of $f(x) = x^4$

There is an easier way to find derivatives!!!!

The derivative of a CONSTANT FUNCTION, f(x) = c, is ZERO

The derivatives of x^n for n = 1,2,3,4,5 ...

f(x)	x	\mathcal{X}^2	X ³	\mathcal{X}^4	X ⁵
f'(x)					

Derivative $f(x) = x^n$

If
$$f(x) = x^n (n \in N)$$
, then $f'(x) = n x^{n-1}$

Example

$$f(x) = x^7$$
, find $f'(x)$

Derivatives of Sums

The derivative of the sum of a finite number of differentiable functions is the sum of their derivatives

Examples

$$f(x) = x^2 - 5x + 2$$
, find $f'(x)$ and $f'(-1)$

$$f(x) = (x^2 - 5)^2$$
, find $f'(x)$ and $f'(2)$