HPC

1st Semester Review Free Response Problems

Appendix B

- 1. Use absolute value notation to describe: x is at most 3 units from a.
- 2. Solve the equation and check you answer: 3(x+7)-2x=3+2x
- 3. Find the real solutions: $2x^2 5x 1 = 0$
- 4. Solve the inequality and graph the solution on the real number line.

$$-6 \le \frac{2-7x}{3} < 1$$

- 5. Find the solution interval(s): $|2x+3| \ge 5$
- 6. Find the solution interval(s): $(x-3)^2 < 64$
- 7. Find the distance between a and b when a = 75 and b = -13

Chapter 1

- 1. Find the distance between the points (3, -1) and (7, 2)
- 2. Find the midpoint of the line segment joining (6, 9) and (-3, 1)
- 3. Find the point (x, 0) that is equidistant from (6,1) and (-2, 5)
- 4. Test y = |x| 2 for symmetry.
- 5. Write the equation for the circle $x^2 + y^2 6x + 2y + 4 = 0$ in standard form.
- 6. Find the intercepts: $y = -4x^2 + 4x 1$
- 7. Which of the following function represent y as a function of x:

a)
$$3y + 2x - 7 = 0$$

b)
$$5x^2y = 9 - 2x$$

c)
$$3x^2 - 4y^2 = 9$$

d)
$$x = 3y^2 - 1$$

- 8. Given f(x) = 3x 7, find f(x+1) + f(2)
- 9. Find the domain and range for the function: f(x) = |3 + x|
- 10. Which of the following graphs represent functions of x?

11. Given the graph of $y = x^4$; sketch the graph of $y = (x-2)^4 + 6$

12. Given the graph of $y = \frac{2}{3}x^3 - x^2$; determine the intervals for which the

function is increasing.

13. Write the equation of the line that passes through the point (-1, 5) and has a slope of 2.

14. Find the slope of the line passing through (5, 9) and (-1, -3)

Chapter 2

- 1. Determine the left and right behavior of the function: $f(x) = -4x^3 + 3x^2 1$.
- 2. Find all the real zeroes of the function: $f(x) = 2x^3 + 14x^2 + 24x$.
- 3. Perform the following division: $(6x^4 4x^3 + x^2 + 10x 1) \div (3x + 1)$.
- 4. Use synthetic division to divide: $(x^4 + 2x^2 x + 1) \div (x 2)$.
- 5. List the possible rational zeros: $f(x) = 3x^5 2x^3 + 3x 5$.
- 6. Given $f(x) = x^3 + 2x 1$, determine if x = -1 is an upper bound for the zeros of f, a lower bound for the zeros of f, or neither.
- 7. Write $x^4 16$ as a product of linear factors.
- 8. Perform the indicated operations, then write the result in standard form.

$$3i(2+7i) - \sqrt{-4}(\sqrt{-9}+1)$$

- 9. Write the complex number $-7i+15i^7$ in standard form.
- 10. Find the quadratic function whose maximum point is (-1,2) and passes through the point (0,1).
- 11. Find the asymptotes of : $f(x) = \frac{x^3 2x^2 + 5}{x^2}$.
- 12. Sketch the graph of the function: $f(x) = \frac{x+2}{x+1}$

Chapter 3

- 1. Sketch a graph of the function: $f(x) = 3^x 5$.
- 2. Find the balance B after 10 years if \$800 is invested in an account that pays

$$11\frac{1}{2}\%$$
 interest compounded monthly. $A = P\left(1 + \frac{r}{n}\right)^{nt}$

In problems 3 - 5, evaluate the expression.

- 3. $200 5e^{0.002x}$, for x = 65.
- 4. $\frac{16\ln(\frac{1}{2})}{3\ln 10}$
- 5. $\log_5 22$
- 6. Write the equation as a single logarithm: $\frac{1}{5}[3\log(x+1) + 2\log(x-1) \log 7]$
- 7. Write in logarithmic form: $3^5 = 243$
- 8. Solve for x: $\ln x = 5.3670$
- 9. Use logarithms to simplify the following:
 - A) $\log_b b$ B) $\log_b \left(\frac{m}{n}\right)$ C) $b^{\log_b x}$
- 10. Find the domain of the function: $f(x) = 3 \log(x^2 1)$

11. The demand equation for a certain product is given by $p=450-0.4e^{0.007x}$. Find the demand x if the price charged is \$300.

In problems 12 -14, solve for x.

12.
$$\log x + \log(x+3) = 1$$

13.
$$2^{x-1} = 5^{2x+6}$$

14.
$$\log_x 16 = 5$$