Honors - Precal

4.3 Right Triangle Trig

Let θ be an acute angle of a right triangle.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

$$csc \theta = \frac{hyp}{opp}$$

$$cos \theta = \frac{adj}{hyp}$$

$$sec \theta = \frac{hyp}{adj}$$

$$tan \Theta = \frac{opp}{adj}$$

$$\cot \theta = \frac{\text{adj}}{\text{onn}}$$

Example 1 - Evaluating Trig Functions

Evaluate the six trig function of θ in the given triangle

$$sin \theta =$$

$$csc \theta =$$

$$cos \theta =$$

$$sec \theta =$$

$$tan \theta =$$

$$cot \theta =$$

See p. 274; exercise 3

Example - Evaluating Trig Functions of 45^{0} Find the exact values of $\sin 45^{0}$, $\cos 45^{0}$, $\tan 45^{0}$

$$sin 45^0 =$$

$$\cos 45^{\circ} =$$

$$tan \ 45^0 =$$

See p. 274; exercise 17

Example 3 - Evaluating Trig Functions of 30° & 60°

$$sin 60^{\circ} =$$

$$\cos 60^{\circ} =$$

$$tan 60^{0} =$$

See p. 275; exercise 19

Special Angles

	sin	cos	tan	csc	sec	cot
00						
30^{o}						
45°						
600						
900						

Cofunctions of Complementary Angles are Equal

If θ is an acute angle:

$$sin (90^{0} - \theta) = cos \theta$$

$$cos (90^{0} - \theta) = sin \theta$$

$$tan (90^{0} - \theta) = cot \theta$$

$$cot (90^{0} - \theta) = tan \theta$$

$$sec (90^{0} - \theta) = csc \theta$$

$$csc (90^{0} - \theta) = sec \theta$$

Fundamental Trig Identities

Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$

$$cos \theta = \frac{1}{sec\theta}$$

$$tan \theta = \frac{1}{cot\theta}$$

$$csc \theta = \frac{1}{sin\theta}$$

$$sec \theta = \frac{1}{cos\theta}$$

$$sin \theta = \frac{1}{csc\theta}$$
 $cos \theta = \frac{1}{sec\theta}$ $tan \theta = \frac{1}{cot\theta}$
 $csc \theta = \frac{1}{sin\theta}$ $sec \theta = \frac{1}{cos\theta}$ $cot\theta = \frac{1}{tan\theta}$

Quotient Identities

$$tan \theta = \frac{sin \theta}{cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$sin^2 \theta + cos^2 \theta = 1$$

$$1 + tan^{2} \theta = sec^{2} \theta$$
$$1 + cot^{2} \theta = csc^{2} \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Example 4 - Applying Trig Identities

Let θ be an acute angle s.t. $\sin \theta = 0.6$. Find $\cos \theta$ and $\tan \theta$ using the trig identities.

See p. 275; exercise 29

Example 5 - Using Trig Identities

Use trig identities of transform one side of the equation into the other $(\theta < \theta < \pi/2)$

a.)
$$cos\theta sec\theta = 1$$

b.)
$$(\sec\theta + \tan\theta) (\sec\theta - \tan\theta) = 1$$

See p. 275; exercise 39

Evaluating Trig functions with a Calculator Set mode to degree

Applications using Right Triangles

Example 7 - Using Trig to Solve a Right Triangle

A surveyor is standing 50' from the base of a large tree.

The surveyor measures the angle of elevation to the top of the tree as 71.5°.

How tall is the tree?

See p. 276; exercise 59

Example 8 - Using Trig to Solve a Right Triangle

You are 200 yards from a river. Rather than walking directly to the river, you walk 400 yards along a straight path to the river's edge. Find the acute angle θ between this path and the river's edge.

See p. 276; exercise 61

Example 9 - Solving a Right Triangle

Find the length c of the skateboard ramp.

See p. 276; exercise 63