B.2 - Graphs of Equations

- What will you learn?
- To sketch graphs of equations by point plotting
- To graph equations using a graphing calculator
- To use graphs of equations to solve real-life problems

Title: Aug 6-8:54 AM (1 of 9)

Equations - show the relationships between 2 quantities

Examples

rate of inflation
federal deficit time of the year
unemployment rate

Example 1 - Determining Solution Points

Determine whether the following points lie on the graph of y = 10x - 7

a.) (2, 13)

b.) (-1,-3)

See p. A43; exercise 3

Example 2 - Sketching a Graph by Point Plotting

Use point-plotting & graph paper to sketch the graph of 3x + y = 6

First, get y on one side all by itself!

X	y
-1	
$egin{pmatrix} -1 \\ 0 \end{bmatrix}$	
$oxed{0}{1}$	
$\frac{1}{2}$	
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	
)	

See p. A43; exercise 7

What are **INTERCEPTS**????

What is the value of x at the y-intercepts

What is the value of y at the x-intercepts _____

Example 3 - Sketching a Graph by Point Plotting Sketch the graph of $y = x^2 - 2$

\mathcal{X}	y
-2	
-1	
$\left \begin{array}{c} \mathbf{r} \\ \mathbf{\theta} \end{array} \right $	
$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	

What is the name of the curve you sketched in this problem?

See p. A43; exercise 9

Using a Graphing Calculator

Graphing Equations

- 1. Get y on left side by itself
- 2. Enter equations into \overline{y}
- 3. Check WINDOW must show all important features of the graph
- 3. Graph

Example 4 - Using a Graphing Calculator to Graph an Equation

$$2y + x3 = 4x$$

y =

WINDOW

TABLE

See p. A44; exercise 39

Title: Aug 6-11:09 AM (6 of 9)

3 Different Approaches to Solving Problems

Numerical Approach

Algebraic Approach

Graphical Approach

Title: Aug 6-11:49 AM (7 of 9)

Example 6 - Running a Marathon A runner runs at a constant rate of 4.9 miles per hour. Verbal Model **Equation** a.) Determine how far the runner can run in 3.1 hours b.) Determine how long it will take to run 26.2 miles **Algebraic Solution Graphical Solution** See p. A45; exercise 67 \Rightarrow \Rightarrow If given x....how do you find y? If given y...how do you find x?

Title: Aug 6-2:17 PM (8 of 9)

Example 7 - Monthly Wage

\$\$\$

You receive a monthly salary of \$2000 plus commission of 10% of sales.

Verbal Model

Equation

- a.) Sales are x = 1480 in August. What are your wages for the month?
- b.) You receive \$2225 for september. What are your sales for that month?

Numerical Solution

Graphical Solution

If given x....how do you find y?

If given y...how do you find x?

See p. A46; exercise 72

Title: Aug 6-2:24 PM (9 of 9)