B. 4 - Solving Inequalities Algebraically & Graphically

- What will you learn???
- ••
- To use properties of inequalities to solve l inear inequalities
- To solve inequalities involving <u>absolute values</u>
- To solve polynomial inequalities
- To solve <u>rational inequalities</u>
- To use inequalities to model and solve <u>real-life problems</u>

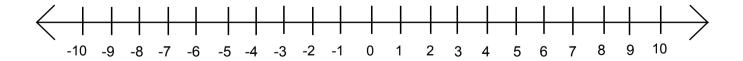
Title: Aug 7-11:31 AM (1 of 14)

Properties of Inequalities

Let a, b and c be real numbers

1. Transitive Property

2. Addition of Inequalities


3. Addition of a Constant

What happens to an inequality when you multiply by a negative number???

4. Multiplying by a Constant

Example 1 - Solving a Linear Inequality

$$5x - 7 > 3x + 9$$

See p. A72; exercise 11

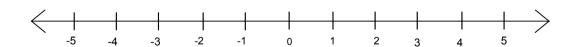
Example 2 - Solving an Inequality

$$1-\frac{3}{2}x\geq x-4$$

Algebraic

Graphical

See p. A72; exercise 13


Title: Aug 8-2:09 PM (4 of 14)

Example 3 - Solving a Double Inequality

$$-3 \le 6x - 1$$
 and $6x - 1 < 3$

Algebraic

Graphical

See p. A72; exercise 15

Title: Aug 8-2:14 PM (5 of 14)

Inequalities Involving Absolute Value

Let x be a variable or an algebraic expression and let a be a real number s. t. $a \ge 0$

1. The solutions of |x| < a are all values of x that lie between-a and a.

$$x < a$$
 iff $-a < x < a$

2. The solutions of |x| > a are all values of x that are less than -a or graeater than a.

$$x > a$$
 iff $x < -a$ or $x > a$

Remember???? "less than" and or

Example 4 - Solving Absolute Value Inequalities

a.)
$$|x-5| < 2$$

Algebraic

Graphical

b.)
$$|x-5| > 2$$

Algebraic

Graphical

See p. A72; exercise 29

Title: Aug 8-3:00 PM (7 of 14)

Polynomial Inequalities

$$x^2 - 2x - 3 = (x - 3)(x + 1)$$

Divides the number line into intervals Test one value in each interval

Example 5 - Investigating Polynomial Behavior

Use the zeros to find intervals on the number line Determine whether the polynomial is positive of negative in each interval

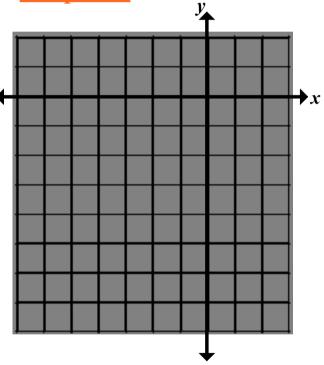
$$x2-x-6$$

See p. A73; exercise 43

Example 6 - Solving a Polynomial Inequality

$$2x^2 + 5x > 12$$

Algebraic

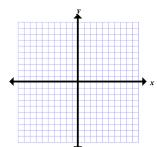

Critical Numbers (zeros) :_____

Intervals:

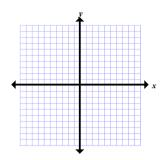
See p. A 73; exercise 47

Graphical

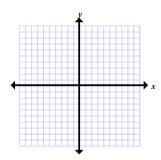
$$2x3 - 3x2 - 32x > -48$$

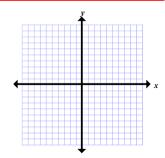

Critical Numbers (zeros):_____

•


See p. A73; exercise 49

Example 8 - Unusual Solution Sets


a.)
$$x^2 + 2x + 4 > 0$$


b.)
$$x^2 + 2x + 1 \le 0$$

c.)
$$x2+3x+5<0$$

d.)
$$x2-4x-4>0$$

Title: Aug 8-3:44 PM (11 of 14)

Rational Inequalities

Remember....a rational expression can only change signs at its

Example 9 - Solving a Rational Inequality

$$\frac{2x-7}{x-5} \leq 3$$

Algebraic

Graphical

Rewrite

Critical Numbers:

Intervals:

See p. A73; exercise 55

Implied Domain set of all x values for which the function is defined

Example 10 - Finding the Domain of an Expression

Find the domain of
$$\sqrt{64 - 4x^2}$$

See p. A73; exercise 63

Title: Aug 9-7:58 AM (13 of 14)

Example 11 - Height of a Projectile

A projectile is fired straight upward from ground level with an initial velocity of 384 ft/sec.

During what time period will its height exceed 200 ft?

Position Equation
$$s = -16t2 + vat + s0$$
 $s = \text{height (feet)}$ $t = \text{time (seconds)}$

See p. A73; exercise 65

Title: Aug 9-8:02 AM (14 of 14)