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The product rule can be extended to cover products involving more than two terms.  For example, 

if f, g, and h are differentiable functions of x, then:
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EXAMPLE 1  Differentiation with the Product Rule
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Find the derivative of 
[image: image1.wmf](

)

(

)

(

)

2

3254

fxxxx

=-+


SOLUTION
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Using the Product Rule, we have: 
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REMARK  Note that the derivative of a product of two functions is not (in general) given by the product of the derivatives of the two functions.  To see this, try comparing the product of the derivatives of 
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with the derivative found in Example 1.  In Example 1, we had the option of finding the derivative with or without the Product Rule, we can write:
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In the next example, we must use the Product Rule to find the derivative.

EXAMPLE 2  Using the Product Rule
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Find the derivative of 
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SOLUTION
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EXAMPLE 3  Using the Product Rule
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Find the derivative of 
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SOLUTION
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REMARK  In Example 3, notice that we use the Product Rule when both factors of the product are variable, and we use the Constant Multiple Rule when of the factors is a constant.
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EXAMPLE 4  Using the Quotient Rule
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Differentiate:
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SOLUTION
[image: image74.wmf](

)

2,2

[image: image75.wmf](

)

7)

1

x

fx

x

=

-


REMARK  Note the use of parentheses in Example 4.  A liberal use of parentheses is recommended for all types of differentiation problems.  For instance, with the Quotient Rule, it is a good idea to enclose all factors and derivatives in parentheses and to pay special attention to the subtraction required in the numerator. 
When we introduced the differentiation rules to you, we emphasized the need to rewrite before differentiating.  The next example illustrates this point with the Quotient Rule.
EXAMPLE 5  Rewrite before using the Quotient Rule
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REMARK  Not every quotient needs to be differentiated by the Quotient Rule.  For example, the quotients in the next example can each be considered as the product of a constant times a function of x.  In such cases it is more convenient to use the Constant Multiple Rule rather than the Quotient Rule.
EXAMPLE 6  Differentiating quotients with the Constant Multiple Rule
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       Given Function             Rewrite
                   Differentiate
         Simplify
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REMARK  Because of the abundance of trigonometric identities, the derivative of a trigonometric function can take many forms.  This presents a challenge when you are trying to match your answer with the answer from an answer key.  The next example illustrates the possible diversity of trigonometric forms.
EXAMPLE 7  Different forms of a derivative

Differentiate the function:

in two forms, and show that the derivatives are equal.
SOLUTION

For the first form, we can write

For the second form, we can write


To show that these two derivatives are equal, we write



ASSIGNMENT #1

For problems 1-6, differentiate the given function.




For problem 7, find the equation of the tangent
line to the graph of the given function at the
indicated point.


ASSIGNMENT #2

For problems 1-6, differentiate the given function.






For problems 8-11, find the 2nd derivative.



EXAMPLE 8  Using the Chain Rule to Differentiate

Differentiate the function:






EXAMPLE 9  Using the Chain Rule with trigonometric functions

Differentiate the function:


ASSIGNMENT #3
Find the derivative.  Show all work on a separate sheet of loose-leaf.
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*11.    Find the derivative of  
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  at the point 
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.  Then find the equation of the 
tangent line at (2,2).
ASSIGNMENT #4
For the following problems, determine the intervals in which each function is 

(a) increasing and (b) decreasing.

ASSIGNMENT #5
For problems 1-4, determine the nature of each critical point of the following functions.


For problems 5-8, using calculus, sketch the graph of each function.  Show work to support (ie.  derivatives,
critical numbers, sign charts, x and y intercepts…)


ASSIGNMENT #6
Solve the following problems.

1)   Squares of side x cm are cut from the corners of a cardboard square with sides of 6 cm.  The flaps are
      bent and taped to form a tray.  Show that its volume V 
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.  
      Find the maximum volume that the tray can have.
2)  The sum of two nonnegative integers is 28.  What is the largest possible value for their product?
      What is the smallest value for their product?
3)  The height of a projectile above its point of projection after t seconds is given by the formula
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.  Calculate the time it takes to reach its maximum height.  Find that maximum height. 
4)  A circle of radius r units has a sector with an area of 25 
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cm

.  The perimeter of the sector is given by the
     formula 
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  Find the minimum value of P.
5)  The perimeter of a rectangular enclosure is 100 m.  Show that when the area of the enclosure is at its
      maximum value, the enclosure will be a square.
Honors Pre-Calculus 



Name__________________________________________
Calculus Packet 2 - Review

Find the derivative.  No fraction in fractions, no fractional exponents, no negative exponent in answers.
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Show ALL Work.

11)  Determine the relative extrema values and points of inflection.
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12)  Use the second derivative test and your knowledge of 4th degree polynomials to determine the relative 
        or absolute extreme values of the function :     
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13)  Find the intervals of  x where f(x)  is increasing and decreasing.  Show all work.     
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14.     
[image: image38.wmf]32

13

3

22

()

xx

fx

-+

=

 

a)  x-intercept (s):    ____________

b)  y-intercept: _______________

c)  Identify and show points of  f(x) as relative maximum, relative minimum or points of inflection.

     Show all work in an orderly manner.




d)  Graph.







15)  Find the intervals of  x where  f(x)  is concave up and concave down.  Show all work.
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Solutions to Packet #2

Assignment #1




Assignment #2

Assignment #3

Assignment #4




 
Assignment #5


Assignment #6


The product of two differentiable functions, f and g, is itself differentiable.  Moreover, the derivative of fg is given by the first function times the derivative of the second plus the second function times the derivative of the first.  

















Theorem:


Product Rule
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derivative


  of first





derivative


of second





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





(second)





(first)
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Product Rule





Constant Multiple  Rule











The quotient of two differentiable functions, f and g, is itself differentiable at all values of x for which � EMBED Equation.DSMT4  ���.  Moreover, the derivative of f/g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, divided by the denominator squared.  











Theorem:


Quotient Rule








� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given function





Rewrite





Quotient Rule





Given function
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Theorem:


Derivatives of trigonometric functions
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For problems 8-10, complete the table without using the Quotient Rule (see Example 6)
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                     Function          Rewrite       Differentiate       Simplify
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For problems 11-18, differentiate the given function.
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Point





Function      .
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           For problem 12, find the equation of the tangent


           line to the graph of the given function at the


           indicated point.
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Function      .





Point
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13)  The function:
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measures the percentage of the normal level of oxygen in a pond, where t is the time in weeks after organic waste is dumped into the pond.  Find the rate of change of f with respect to t when:


a)  � EMBED Equation.DSMT4  ���


b)  � EMBED Equation.DSMT4  ���


c)  � EMBED Equation.DSMT4  ��� 





14)  A population of 500 bacteria is introduced into a 


       culture and grows in number according to the 


       equation
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       where t is measure in hours.  Find the rate at which


       the population is growing when � EMBED Equation.DSMT4  ���
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The chain rule is a rule for differentiating compositions of functions.  Given 2 functions � EMBED Equation.DSMT4  ���and � EMBED Equation.DSMT4  ���, where the composite is � EMBED Equation.DSMT4  ���, the derivative of this composite function is the derivative of the outer function times the derivative of the inner function.














Theorem:


Chain Rule
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Given function
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Rewrite





Use the Chain Rule





Simplify





Express in radical form
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10)  Find the equation of the tangent line of � EMBED Equation.DSMT4  ���   at x = 1.





y





x
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Use Calculator to check answers


								Show all work using calculus				-First derivative,


	- Second Derivative


	-Sign Charts
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