1.5 Combinations of Functions

- What will you learn?
- To add, subtract, multiply & dividefunctions
- To find compositions of one function with another
- To use <u>combinations</u> of functions to model and solve real-life problems

Title: Jul 11-6:53 AM (1 of 18)

Arithmetic Combinations of Functions

Two functions can combine to create new functions!

$$f(x) = 2x - 3$$

Let f and g be two functions with overlapping domains. Then for all x common to both domains:

$$g(x) = x2-1$$

Example

1. Sum
$$(f+g)x = f(x) + g(x)$$

2. Difference
$$(f-g)=f(x)-g(x)$$

3. Product
$$(fg) x = f(x) \cdot g(x)$$

4. Quotient
$$\left(\begin{array}{cc} f \\ g \end{array} \right) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$$

Example 1 - Finding the Sum of Two Functions

Given
$$f(x) = 2x + 1$$
 and $g(x) = x^2 + 2x - 1$

Find
$$(f+g)(x)$$
.

Then evaluate the sum when x = 2.

See p.58; exercise 13

Title: Jul 11-7:14 AM (3 of 18)

Example 2 - Finding the Difference of Two Functions

Given
$$f(x) = 2x + 1$$
 and $g(x) = x^2 + 2x - 1$

Find
$$(f-g)(x)$$
.
Then evaluate the sum when $x=2$.

Algebraic

Graphical

See p. 58; exercise 15

Title: Jul 11-7:17 AM (4 of 18)

Remember: domains must overlap restrictions must be considered

What were the domains of the two functions in Example 1 & Example 2?

What is the domain of the sum /difference of the two functions?

What is the domain of
$$f(x) = \frac{1}{x}$$

What is the domain of
$$g(x) = \sqrt{x}$$

What is the domain of (f+g)

Example 3 - Finding the Product of Two Functions

Given
$$f(x) = x2$$
 and $g(x) = x-3$

Find
$$(fg)(x)$$
.
Evaluate the product at $x = 4$.

See p. 58; exercise 17

Example 4 - Finding the Quotient of Two Functions

Given
$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{4-x^2}$

Find (f/g)(x) and (g/f)(x). Find the domains of f/g and g/f.

See p. 53; Graphing Calculator Tech Tip

See p. 58; exercise 19

Title: Jul 11-7:31 AM (7 of 18)

Compositions of Functions

The <u>composition</u> of the function f with the function g is

$$(f \circ g)(x) = f(g(x))$$

The <u>domain</u> of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f.

Example 5 - Forming the Composition of f with g

Given
$$f(x) = \sqrt{x}$$
, $x \ge 0$
 $g(x) = x - 1$, $x \ge 1$

Find $(f \circ g)$ and if possible, find $(f \circ g)(2)$ and $(f \circ g)(0)$

See p. 59; exercise 35

Exploration

Let
$$f(x) = x + 2$$

$$g(x) = 4 - x2$$

Are $f \circ g$ and $g \circ f$ equal?

Example 6 - Compositions of Functions

Let
$$f(x) = x + 2$$

 $g(x) = 4 - x2$
Evaluate $(f \circ g)(x)$ and $(g \circ f)(x)$
 $x = 0, 1, 2, 3$

Algebraic

Numerical (Graphing Calc)

Title: Jul 11-12:26 PM (10 of 18)

To determine the domain of $f \circ g$: restrict the outputs of g so that they are in the domain of f

For example:

Given
$$f(x) = 1/x$$

 $g(x) = x + 1$

What are the outputs of g?

What is the domain of f?

What do the outputs of g have to be restricted to?

Therefore what is the domain of $f \circ g$?

Example 7 - Finding the Domain of the Composite Function

Given
$$f(x) = x2-9$$

 $g(x) = \sqrt{9-x2}$

Find
$$(f \circ g)(x)$$

Algebraic

Graphical

See p. 59; exercise 39

Title: Jul 11-12:41 PM (12 of 18)

Example 8 - A Case in which $f \circ g = g \circ f$

Given
$$f(x) = 2x + 3$$

 $g(x) = \frac{1}{2}(x-3)$

Find
$$(f \circ g)(x)$$
 and $(g \circ f)(x)$

See p. 59; exercise 43

Title: Jul 11-12:45 PM (13 of 18)

It is important to be able to identify two functions that make up a composition. "Decompose" a composite function - look for an "inner" and "outer" function.

Example 9 - Identifying a Composition Function

Write the function h(x) = (3x - 5)3 as a composite of two functions.

See p. 59; exercise 59

Title: Jul 11-12:49 PM (14 of 18)

Example 10 - Identifying a Composite Function

Write the function
$$h(x) = \frac{1}{(x-2)2}$$
 as a composition of two functions.

See p. 59; exercise 59

Given
$$f(x) = 3x^2 + 2$$
 and $g(x) = 2x$

1. Find
$$(f+g)(-1)$$
 and $\binom{f}{g}(2)$

2. Find
$$f \circ g$$

3. Find two functions f and g such that $(f \circ g)(x) = h(x)$

See Exploration on p. 56

Example 11 - Bacteria Count

The number N of bacteria in a refrigerated food is given by

$$N(T) = 20 T2 - 80 T + 500,$$
 $2 \le T \le 14$

where T = Temperature of food (Celcius).

When the food is removed from refrigeration, the temperature of the food is given by

$$T(t) = 4t + 2, \quad 0 \le t \le 3$$

where t = time (hours)

- a.) Find the composition of N(T(t))
- b.) Find the number of bacteria when t=2
- c.) Find the time when the bacteria count reaches 2000

See Exploration on p. 57

See p. 60; exercise 79

Title: Jul 11-1:27 PM (18 of 18)