1.6 - Inverse Functions

What will you learn?

- To find **Inverse Functions** informally
- To verify that two functions are inverses of each other
- To use graphs of functions to decide whether they have inverses
- To determine if functions are <u>one-to-one</u>
- To find Inverse Functions algebraically

Title: Jul 11-4:48 PM (1 of 15)

Relation: {	(-1,2)(3,6)(0,3)(-4,-1)(4,7)
`	
Inverse :	
What did you do to 1	find the inverse?
	Inverse Function
"Inv	erse of $f'' \longrightarrow f-1$
	f(x) = x + 4
Set A =	$\{1,2,3,4\}$ Set B = $\{5,6,7,8\}$
Ordered Pairs:	
Inverse:	
nverse Functio	on: $f - I(x) =$
What do you notice	e about the function and its inverse function?
Find the composit	ion of the two functions
f(f-1(x))	

Title: Jul 11-4:54 PM (2 of 15)

What do you notice??

Example 1 - Finding Inverse Functions Informally

Given f(x) = 4x

Find f-1(x)

Verify that both f(f-1(x)) and f-1(f(x)) are equal to the identity function

See p. 69; exercise 1

Example 2 - Finding Inverse Functions Informally

Given f(x) = x - 6

Find f-1(x)

Verify that both f(f-1(x)) and f-1(f(x)) are equal to the identity function

See p. 69; exercise 3

Title: Jul 12-7:04 AM (4 of 15)

Another way to visualize inverse functions

X	-2	-1	0	1	2	x	-8	-7	-6	-5	-4
f(x)	-8	-7	-6	-5	-4	f - I(x)	-2	-1	0	1	2

Definition of Inverse Function

Let f and g be two functions such that

$$f(g(x)) = x$$
, for every x in the domain of g and

$$g(f(x)) = x$$
 for every x in the domain of f

g is the inverse of f g f - I(x)

The domain of f must be equal to the range of f-1

If g is the inverse of f then f must be the inverse of g

Example 3 - Verifying Invers Functions Algebraically

Show that the following functions are inverses of each other.

$$f(x) = 2x3 - 1$$

$$g(x) = \sqrt[3]{\frac{x+1}{2}}$$

See Tech Tip p.64

See p. 69; exercise 15

Example 4 - Verifying Inverse Functions Algebraically

Which of the following functions is the inverse of $f(x) = \frac{5}{x-2}$

$$g(x) = \frac{x-2}{x}$$
 $h(x) = \frac{5}{x} + 2$

See p. 69; exercise 19

The Graph of an Inverse Functions

The graphs of a function f and its inverse f-lare related to each other in the following way:

If point (a, b) lies on f

Then point (b, a) must lie on f-1

and vice versa

This means that the graph of f-1 is a <u>RELECTION</u> of f over

$$y = x$$

Example 5 - Verifying Inverse Functions Graphically and Numerically

$$f(x) = 2x3-1$$

$$f(x) = 2x3-1$$
 $g(x) = \sqrt[3]{\frac{x+1}{2}}$

Verify that f and g are inverses of each other graphically and numerically. (Use you calculator)

See p. 70; exercise 25

The Existence of an Inverse

To have an inverse, a function must be one-to-one

No two elements in the domain of f correspond to the same element in the range of f

Definition of a One-to-One Function

A function is one-to-one if, for a and b in its domain, f(a)=f(b) implies a=b

Existence of an Inverse Function

A function f has an inverse function f-lonly if it is one-to one

Is f(x) = x2 one -to-one?

Does f(x) = x2 have an inverse function?

Tests for On-to-One Functions

- Use the HORIZONTAL LINE TEST
- If f is increasing on its entire domain
- If f is decreasing on its entire domain

Title: Jul 12-6:49 PM (9 of 15)

Example 6 - Testing for One-to-One Functions

Is
$$f(x) = \sqrt{x} + 1$$
 one-to-one?

Algebraic

Graphical

See p. 70; exercise 33

Title: Jul 12-7:03 PM (10 of 15)

Finding Inverse Functions Algebraically

- 1. Horizontal Line Test
- 2. Replace f(x) by y
- 3. Interchange the roles of x and y
- 4. Replace y by f-1
- 5. Verify that f and f-lare inverse functions
 - show that domain of f equals range of f-1
 - show that range of f is equal to the domain of f-1
 - show f(f I(x)) = x
 - show f-1(f(x)) = x

See Tech Tip on p. 67

Example 7 - Finding an Inverse Function Algebraically

Find the inverse of
$$f(x) = \frac{5-3x}{2}$$

See. p 70; exercise 53

Example 8 - Finding an Inverse Algebraically

Find the inverse of f(x) = x2-4

Use a graphing utility to graph f and f-I in the same window

See p. 70; exercise 55

Title: Jul 12-7:46 PM (13 of 15)

Example 9 - Finding an Inverse Function Algebraically

Find the inverse of
$$f(x) = \sqrt{2x-3}$$

Use a graphing utility to graph f and f-lin the same window

See p. 70; exercise 59

Title: Jul 12-7:50 PM (14 of 15)

Activity

1. Given f(x) = 5x - 7Find f-I(x)

2. Show that f and g are inverse functions by showing f(g(x)) = x and g(f(x)) = x

3. Describe the graphs of functions that have inverse functions and show how the graph of a function and its inverse function are related.