1.7- Exploring Data; Linear Models 7 Scatter Plots

- [©] What will you learn? [©]
- To construct scatter plots
- To interpret correlation
- To use scatter plots
- To use graphing calculator to find linear models for data

Title: Jul 13-9:28 AM (1 of 6)

Example 1 - Constructing a Scatter Plot

See p. 72

P. 77; exercise 1

Title: Jul 13-9:34 AM (2 of 6)

Relationship may not be exactly linear

Mathematical Model - looking for "best fit"

Negative Correlation

No Correlation

Title: Jul 13-9:36 AM (3 of 6)

Title: Jul 13-9:47 AM (4 of 6)

Fitting a Line to Data

- Sketch a line that appears to fit the points
- Find two points
- Finsd the equations of the line that passes through the two points

Example 3 - Fitting a Line to Data

Find a linear model that relates the year to the number of people in the U.S. labor force

Year	People, P
1995	132
1996	134
1997	136
1998	138
1999	139
2000	141
2001	142

See p. 77; exercise 11 (a and b)

Once you have found a model you can test to see how well it fits

Year	P (actual)	P (model)
1995	132	
1996	134	
1997	136	
1998	138	
1999	139	
2000	141	
2001	142	

eople (millions

<u>Sum of the Squared Differences</u> - sum of the squares of the differences between the actual and the model values

<u>Least Squares Regression Line</u> model that has the least sum

Title: Jul 13-10:06 AM (6 of 6)