2.6 Rational Functions & Asymptotes

- **What will you learn?** •
- To find the <u>domains</u> of rational functions
- To find the <u>vertical & horizontal asymptotes</u> of graphs rational functions
- To use rational functions to model and use <u>real-life problems</u>

Title: Jul 23-10:27 AM (1 of 11)

Introduction to Rational Functions

Rational Function
$$\longrightarrow f(x) = \frac{N(x)}{D(x)}$$

N(x) and D(x) are polynomials and D(x) is not the zero polynomial

Domain: all real numbers except the x-values that make the denominator equal to zero

Example 1 - Finding the Domain of a Rational Function

Find the domain of f(x) = 1/xand discuss the behavior of f near any excluded x-values

x			
f(x)			

x			
f(x)			

Basic Reciprocal Function

$$f(x) = \frac{1}{x}$$

Domain:_____

Range:____

Intercepts:

Decreasing on:_____

Function: odd even

Symmetry: _____

Vertical Asymptote:_____

Horizontal Asymptote:_____

Horizontal & Vertical Asymptotes

<u>Vertical Asymptote</u>

Horizontal Asymptote

$$f(x) = \frac{4}{x^2 + 1}$$

$$f(x) = \frac{2}{(x-1)2}$$

Title: Jul 23-10:57 AM (4 of 11)

Asymptotes of a Rational Function

Let f be the rational function

$$f(x) = \frac{N(x)}{D(x)} = \frac{anxn + an-kn-1 + ... + a 1x + a0}{bmxm + bm-km-1 + ... + b1x + b0}$$

where N(x) and D(x) have no common factors

- 1. The graph of f has <u>vertical asymptotes</u> at the zeros of D(x)
- 2. The graph of f has at most one <u>horizontal asymptote</u> determined by comparing the degrees of N(x) and D(x)
 - A. If n < m, the graph of f has the line y = 0 (x axis) as the horizontal asymptote
 - B. If n = m, the graph of f has the line y = an/bn as a horizontal asymptote, where an is the leading coefficient of the numerator and bm is the leading coefficient of the denominator
 - C. If n > m, the graph has no horizontal asymptote

Title: Jul 23-11:07 AM (5 of 11)

Example 2 - Finding the Horizontal & Vertical Asymptotes

Find all the horizontal & vertical asymptotes of the graph of each rational function.

a.)
$$f(x) = \frac{2x}{3x^2+1}$$

b.)
$$f(x) = \frac{2x^2}{x^2-1}$$

Example 3 - Finding Horizontal & Vertical Asymptotes

Find all horizontal & vertical asymptotes of:

$$f(x) = \frac{x2 - x - 2}{x2 - x - 6}$$

Example 4 - Finding a Function's Domain & Range

Given
$$f(x) = \frac{3x3 + 7x2 + 2}{-4x3 + 5}$$

Find: a.) domain

b.) vertical asymptote

c.) horizontal asymptote

Algebraic

Numerical

Example 5 - A Graph with 2 Horizontal Asymptotes

A function that is not rational can 2 horizontal asymptotes - one left, one right

$$f(x) = \frac{x+10}{|x|+2}$$

 $f(x) = \frac{x+10}{|x|+2}$ y = -1 is a horizontal asymptote to the *left* y = 1 is a horizontal asymptote to the *right*

$$f(x) =$$

Example 6 - Cost-Benefit Model

A utility company burns coal to generate electricity. The cost C (\$) of removing p% of the smokestack pollutants is given by

$$C = 80,000 p / (100-p)$$
 $\theta \le p < 100$

$$0 \leq p < 100$$

Graph this function on your calculator.

You are a member of a state legislature that is considering a law that would require utility companies to remove 90% of the pollutants from their smokestack emission. The current law requires 85% removal.

How much additional cost would there be to the utility company because of the new law?

See p. 149; exercise 35

Title: Jul 24-8:35 AM (10 of 11)

Example 7 - Ultraviolet Radiation

For a person with sensitive skin, the amount of time T (hours) the person can be exposed to the sun with minimal burning can be modeled by

$$T = \frac{0.37s + 23.8}{s} \qquad 0 < s \le 120$$

where s is the Sunsor Scale. The Sunsor Scale is based on UVB rays.

See p. 150; exercise 39

Title: Jul 24-9:22 AM (11 of 11)