2.7 Graphs of Rational Functions

What will you learn?

- To analyze & sketch graphs of rational functions
- To sketch graphs of rational functions that haves*lant asymptotes*
- To use rational functions to model & solvereal-life problems

Title: Jul 24-9:31 AM (1 of 9)

Rules for Graphing Rational Functions

Let f(x) = N(x)/D(x), where N(x) and D(x) are polynomials

- 1. Simplify f
- 2. Find & plot y-intercepts $\rightarrow f(\theta)$
- 3. Find the zeros \longrightarrow N(x) = 0
- 4. Find and sketch any vertical asymptotes $\longrightarrow D(x) = 0$
- 5. Find & sketch any horizontal asymptotes
- 6. Plot at least one point between & one point beyond each x intercepts and vertical asymptote
- 7. Use smooth curnves to complete the graph

Tech Tip - use Dot Mode when vertical asymptotes are present

Example 1 - Sketching the Graph of a Rational Function

Sketch (by hand) the graph of
$$g(x) = \frac{3}{x-2}$$

$$g(x) = \frac{3}{x-2}$$

y - intercept : _____

x - intercept : _____

Vertical Asymptote : _____

Horizontal Asymptote : _____

Additional Points:

x	g(x)

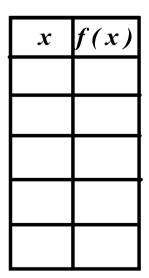
	<i>y</i>								
+	Н								→ _X
	Н								
	Н								
	Н								

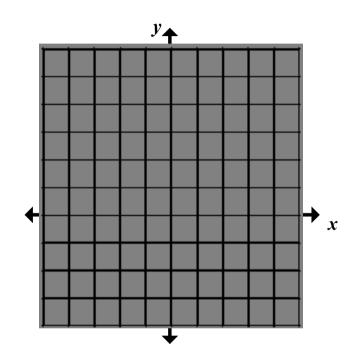
See p. 157; exercise 9

What do you notice about the graph of the above function?

Example 2 - Sketching the Graph of a Rational Function

Sketch (by hand) the graph of $f(x) = \frac{2x-1}{x}$


y - intercept : _____


x - intercept : _____

Vertical Asymptote : _____

Horizontal Asymptote:

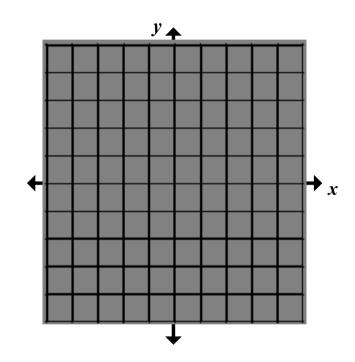
Additional Points:

See p. 157; exercise 13

Example 3 - Sketching the Graph of a Rational Function

Sketch (by hand) the graph of
$$f(x) = \frac{x}{x^2 - x - 2}$$

y - intercept : _____


x - intercept : _____

Vertical Asymptote : _____

Horizontal Asymptote : _____

Additional Points:

X	f(x)

See p. 157; exercise 21

Example 4 - Sketching the Graph of a Rational Function

Sketch the graph of
$$f(x) = \frac{x2-9}{x2-2x-3}$$

<i>y</i> - intercept	:	
----------------------	---	--

Additional Points:

x	f(x)
-	_

See p. 157; exercise 23

Slant Asymptotes

Slant (Oblique) Asymptote -

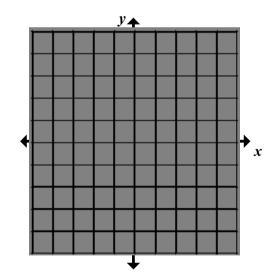
Example:
$$f(x) = \frac{x2-x}{x+1}$$

Title: Jul 25-9:52 AM (7 of 9)

Example 5 - A Rational Function with a Slant Asymptote

Sketch the graph of
$$f(x) = \frac{x^2 - x - 2}{x - 1}$$

y - intercept : _____


x - intercept : _____

Vertical Asymptote : _____

Horizontal Asymptote : _____

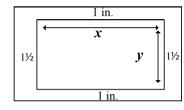
Additional Points:

x	f(x)

See p. 157; exercise 45

Title: Jul 25-10:27 AM (8 of 9)

Example 6 - Finding a Minimum Area


A rectangular page is designed to contain 48 square inches of print.

The margins on each side of the page are 1½ inches wide.

The margins at the top & bottom are 1 inch deep.

What should the dimensions of the page be so that the minimum amount

of paper is used?

Graphical

Numerical

See p. 158; exercise 65

Title: Jul 25-10:32 AM (9 of 9)