3.1 Exponential Functions & Their Graphs

- To recognize and evaluate exponential functions with base a
- To graph exponential functions
- To recognize, evaluate, and graph exponential functions with base e
- To use exponential functions to model & solve real-life problems

Title: Jul 26-9:38 AM (1 of 19)

Exponential Functions

Nonalgebraic Functions — Exponential & Logarithmic

Definition of Exponential Function

The exponential function f with base a is denoted by

$$f(x) = ax$$

Where a > 0

 $a \neq 1$

a is any real number

Think!

Why $a \neq 1$?

Example 1 - Evaluating Exponential Functions

Use a calculator to evaluate each function at the indicated value of x

a.)
$$f(x) = 2x$$
 $x = -3.1$

b.)
$$f(x) = 2-x$$
 $x = \pi$

c.)
$$f(x) = 0.6x$$
 $x = \frac{3}{2}$

See p. 185; exercise 3

Graphs of Exponential Functions

Graphs of exponential functions have similar characteristics

Example 2 - Graphs of
$$y = ax$$

Sketch (by hand) the graphs of the following functions in the same plane

$$a.) \quad f(x) = 2x$$

b.)
$$g(x) = 4x$$

x	2x	<i>4x</i>
-2		
-1		
0		
1		
2		
3		

See p. 185; exercise 7

Example 3 - Graphs of
$$y = a-x$$

Sketch (by hand) the graphs of the following functions in the same plane

a.)
$$F(x) = 2-x$$

a.)
$$F(x) = 2-x$$

b.) $G(x) = 4-x$

X	2-x	4-x
-3		
-2		
-1		
0		
1		
2		

See p. 185; exercise 9

THINK!!!

Can you write the above functions with POSITIVE EXPONENTS????

The properties of exponents can also be applied to real-number exponents!

$$axay =$$

$$(ab)x=$$

$$\frac{ax}{ay} =$$

$$(ax) y=$$

$$a$$
- x =

$$\binom{a}{b}^x =$$

$$a\theta =$$

$$a2 =$$

From examples 2 & 3 - notice

$$F(x) = 2-x = f(-x)$$
 $G(x) = 4-x=g(-x)$

What does this tell you about the graphs $F(x) & f(x) \\ G(x) & g(x)$

Graph these functions on the same plane using you calculator

What are the Domain & Range of the above functions?

See Exploration on p. 178

Exponential Function

$$f(x) = ax \qquad a > 0, a \neq 1$$

$$a > 0$$
, $a \neq 1$

Distinguishing Characteristic - _____

$$f(x) = ax \qquad a > 1$$

Domain:_____

Range : _____

Intercept: _____

Increasing on: _____

Horizontal Asymptote: _____

Continuous

Domain:_____

Range : _____

Intercept: _____

Increasing on: _____

Horizontal Asymptote: _____

Continuous

Notice how the graph of y = ax can be used to sketch functions of the form

$$f(x) = b \pm ax + c$$

Example 4 - Transformations of Graphs of Exponential Functions Each of the following is a transformation of the graph of f(x) = 3x

a.)
$$g(x) = 3x + 1$$

b.)
$$h(x) = 3x-2$$

c.)
$$k(x) = -3x$$

d.)
$$j(x) = 3 - x$$

See p. 185; exercise 19

The Natural Base e

e is an irrational number

 $e \approx 2.718281828$

Title: Jul 26-12:03 PM (10 of 19)

Example 5 - Approximation of the Number eEvaluate the expression [1 + (1/x)]xfor several values of xto see that the values approach $e \approx 2.718281828$ as x increases without bound

Graphical

Numerical

See p. 186; exercise 37

Title: Jul 26-12:09 PM (11 of 19)

Example 6 - Evaluating the Natural Exponential Function

Use a calculator to evaluate the function f(x) = ex at each value of x

a.)
$$x = -2$$

b.)
$$x = 0.25$$

c.)
$$x = -0.4$$

See p. 186; exercise 23

See Exploration p. 181

Example 7 - Graphing Natural Exponential Functions

Sketch the graph of each natural exponential function.

a.)
$$f(x) = 2e \ 0.24x$$

b.)
$$g(x) = \frac{1}{2}e - 0.58x$$

X	f(x)	g(x)
-3		
-2		
-1		
0		
1		
2		
3		

See p. 186; exercise 35

Applications

Exponential Growth

Continuously Compounded Interest

Suppose a principal P is invested at an annual interest rate r, compounded once a year.

If the interest is added to the principal at the end of the year, the new balance P1 is

$$P1 = P + Pr$$
$$= P(1+r)$$

This pattern is repeated each year.

Time in Years	Balance after each Compounding
0	
1	
2	
t	

Quarterly, monthly, daily compoundings

Let n = # of compoundings /year t = # of years

∴ nt = total # times interest is compounded r/n = interest rate per compounding period

 $A = P\left(1 + \frac{r}{n}\right) nt$ account balance after t years

Continuous Compounding

After t years, the balance A in an account with principal P and annual interest rate r (decimal) is given by the following formulas

1. for n compounding per year: $A = P(1 + \frac{r}{n})$ nt

2. Four continuous compounding : A = Pert

Example 8 - Finding the Balance for Compound Interest

A total of \$9000 is invested at an annual interest rate of 2.5%, compounded annually. Find the balance after 5 years.

Algebraic

Graphical

See p. 186; exercise 55

Title: Jul 27-2:52 PM (15 of 19)

Example 9 - Finding Compound Interest

A total of \$12,000 is invested at annual interest rate of 3%. Find the balance after 4 years if the interest rate is compounded:

a.) quarterly

b.) continuously

See p. 186; exercise 57

Activity

1. Sketch the graphs of the functions

 $f(x) = \alpha$ and g(x) = 1 + ex on the same plane.

- 2. Determine the balance A of the end of 20 years if \$1500 is invested at 6.5% interest and compounded:
 - a.) quarterly
 - b.) continuously

3. Determine the amount of money that should be invested at 9% compounded monthly to produce a final balance of \$30,000 in 15 years.

Example 10 - Radioactive Decay

Let y represent a mass of radioactive stontium (96r), in grams, whose half-life is 28 years.

The quantity of strontium present after t years is y = 10 ($\frac{1}{2}$) t/28

a. What is the initial mass when t = 0?

Algebraic

Graphical

b. How much of the initial mass is present after 80 years?

Algebraic

Graphical

See p. 186; exercise 65

Example 11 - Population Growth

The approximate number of fruit flies in an experimental population after t hours is given by $Q(t) = 20 e \ 0.03t$ where $t \ge 0$.

a.) Find the initial number of fruit flies in the population. ($t = \theta$)

b.) How large is the population of fruit flies after 72 hours?

c.) Graph Q

See p. 187; exercise 67