3.2 Logarithmic Functions & Their Graphs

What will you learn?

- ••
- To recognize and evaluate logarithmic functions with base a
- To graph logarithmic functions
- To recognize, evaluate, and graph natural logaithmic functions
- To use logarithmic functions to model and solve real-world problems

Title: Jul 29-9:27 AM (1 of 14)

Logarithmic Functions

Exponential Functions pass the horizontal line test. they have inverse functions

The inverse funtion is call the logarithmic function with basea

Definition of Logarithmic Function

For
$$x > 0$$

 $a > 0$
 $a \neq 1$ $y = log ax$ iff $x = ay$

Logarithmic function with base a

$$f(x) = \log ax \qquad \text{"log base } a \text{ of } x\text{"}$$

 $logax \longrightarrow$ the exponent to which a must be raised to obtain x

Ex)
$$log 28 = 3 \longrightarrow 23 = 8$$

****A logarithm is an exponent!!****

Example 1 - Evaluating Logarithms

Evaluate each logarithm at the indicated value of

a.
$$) f(x) = log 2x, x = 32$$

b.
$$) f(x) = log 3x, x = 1$$

c.)
$$f(x) = log 4x$$
, $x = 2$

d.)
$$f(x) = log 10x$$
, $x = \frac{1}{100}$

Logarithmic Functions with <u>base 10</u> \longrightarrow Common Logarithmic Functions \longrightarrow LOG

Example 2 - Evaluating Common Logarithms on a Calculator Use a calculator to evaluate the f(x) = log 10x at each value of x

a.)
$$x = 10$$

b.)
$$x = 2.5$$

c.)
$$x = -2$$

d.)
$$x = \frac{1}{4}$$

Properties of Logarithms

1.
$$loga 1 = 0 \longrightarrow a0 = 1$$

2.
$$logaa = 1 \longrightarrow a1 = a$$

3.
$$logaax = x$$
 and $alogx = x$ Inverse Property

4. If
$$logax = logay$$
, then $x = y$ 1:1 Property

Example 3 - Using Properties of Logarithms

a.) Solve for x : log 2x = log 23

b.) Solve for x : log 44 = x

c.) Simplify: log 55x

d.) Simplify: 7 log14

Graphs of Logarithmic Functions

To sketch the graph of y = logax

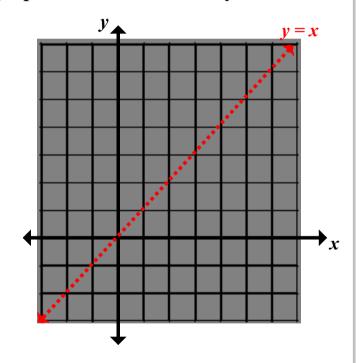
Remember... the graphs of inverse functions are <u>reflections</u> of each other in theline y = x

Example 4 - Graphs of Exponential & Logarithmic FunctionsIn the same coordinate plane, sketch the graph of each function by hand.

$$a.) \quad f(x) = 2x$$

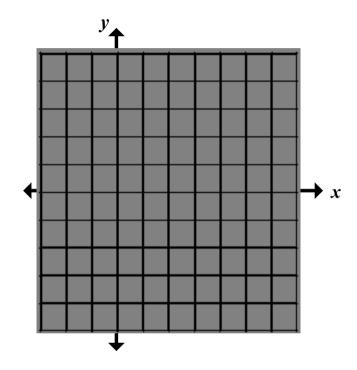
X	f(x)
-2	
-1	
0	
1	
2	
3	

$$\mathbf{b.)} \quad g(x) = log2x$$



Example 5- Sketching the graph of a Logarithmic Function

$$f(x) = log 10x$$



Logarithmic Functions

$$f(x) = logax$$
, $a > 0$, $a \neq 1$

$$a > 0$$
, $a \neq 1$

- Inverse of the exponential function
- Continuous
- Reflection of _____

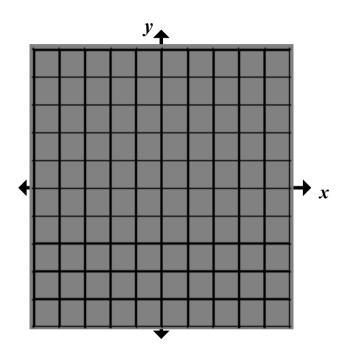
Domain: _____

Range:

Intercept : _____

Increasing on:

Vertical Asymptote: _____

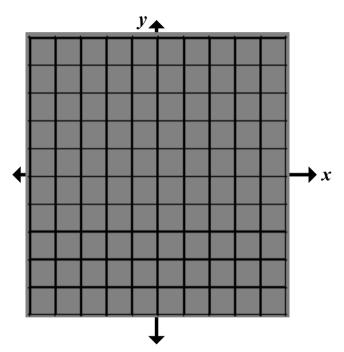


Example 6 - Transformations of Graphs of Logarithmic Functions Each of the following is a transformation of the graph of f(x) = log 10x

a.) Because
$$g(x) = log 10(x-1)$$

= $f(x-1)$

the graph of g can be obtained by shifting the graph of f one unit to the \underline{right}



b.) Because
$$h(x) = 2 + log 10x$$

= $2 + f(x)$

the graph of h can be obtained by shifting the graph two units upward

The Natural Logarithmc Function

Inverse of
$$f(x) = ex \longrightarrow ln x$$

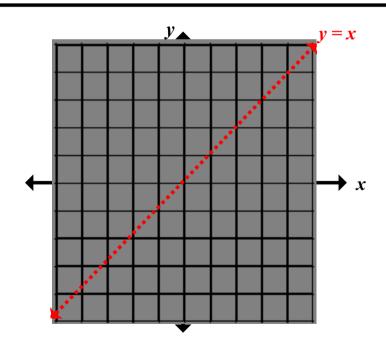
For
$$x > \theta$$

$$y = ln x$$

$$y = \ln x$$
 IFF $x = e y$

Natural Logarithmic Function

$$f(x) = log ex = ln x$$



Title: Jul 30-10:35 AM (10 of 14)

Example 7 - Evaluating the Natural Logarithmic Function Use a calculator to evaluate $f(x) = \ln x$ at each value of x \ln

a.)
$$x = 2$$

b.)
$$x = 0.3$$

c.)
$$x = -1$$

Properties of Natural Logarithms

1.
$$ln 1 = 0$$
 $e0 = 1$

$$e\theta = 1$$

2.
$$ln e = 1$$
 $e1 = e$

$$e1 = e$$

3.
$$ln ex = x$$
 and $eln x = x$

Inverse

4. If
$$ln x = ln y$$
, then $x = y$

1:1 Property

Example 8 - Using Properties of Natural Logarithms

a.)
$$ln \frac{1}{e}$$

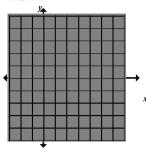
- b.) *e ln5*
- c.) *ln e0*
- d.) 2 ln e

Example 9 - Finding the Domains of Logarithmic Functions

Find the domain of each function:

a.)
$$f(x) = ln(x-2)$$

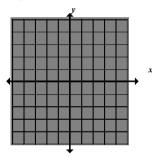
Algebraic



b.)
$$g(x) = ln(2-x)$$

Algebraic

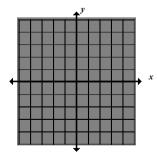
Graphical



c.)
$$h(x) = \ln x^2$$

Algebraic

Graphical



Example 10 - Human Memory Model

Students participating in a psychology experiment attended several lectures on a subject and were given an exam.

Every month for a year after the exam, the students were retested to see how much of the material they remembered.

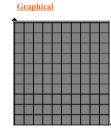
The average scores fro the group are given by the human memory model

$$f(t) = 75 - 6 \ln(t+1), \quad 0 \le t \le 12$$

where t = time (months)

a.) What was the average score on the original exam (t=0)?

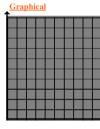
Algebraic



t (months)

b.) What was the average score at the end of t=2 months?

Algebraic

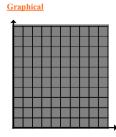


t (months)

c.) What was the average score at the end of t = 6 months?

Algebraic

werage Score



t (months)