SIXTH EDITION

Section 1: Theory of Heat Unit 2: Matter and Energy

SIXTH EDITION

Unit Objectives

After studying this chapter, you should be able to:

- define matter.
- list the three states in which matter is commonly found.
- define density.
- discuss Boyle's Law.
- state Charles' Law.
- discuss Dalton's Law as it relates to the pressure of different gases.

SIXTH EDITION

Unit Objectives

After studying this chapter, you should be able to:

- define specific gravity and specific volume.
- state two forms of energy important to the air conditioning (heating and cooling) and refrigeration industry.
- describe work and state the formula used to determine the amount of work in a given task.
- define horsepower.
- convert horsepower to watts.
- convert watts to British thermal units.

SIXTH EDITION

MATTER

- Described as any substance that occupies space and has mass
- Matter is made up of atoms
- Exists as a solid, liquid or a gas
- The state of matter is determined by heat content of the matter as well as the amount of pressure exerted on the substance

SIXTH EDITION

Solids

Molecules in solids have a great attraction for each other and can maintain a definite shape

All of the force exerted by solids is in the downward direction

SIXTH EDITION

Liquids

The strength of molecular attraction is lower in liquids than in solids

The force of a liquid is exerted outward...

Liquids will take the form and shape of the container in which it is placed

... and downward

SIXTH EDITION

Gases

Gases will take the shape of the vessel they are contained in and will completely fill the vessel

The pressure of a gas is exerted outward in all directions

In the case of a toy balloon...

... as it blown up, the pressure causes the balloon to expand or inflate

SIXTH EDITION

IMPORTANT DEFINITIONS

- Mass Property of matter that responds to gravity
- Weight Depends on the strength of gravitational attraction (More gravity = More weight)
- Density Mass to volume relationship (Water has a density of 62.4 lb/ft³
- Specific Gravity Density of a substance divided by the density of water
- Specific Volume Volume of one pound of a gas (Measured in ft³/lb)

SIXTH EDITION

SPECIFIC GRAVITY EXAMPLE

- Density of water = 62.4 lb/ft³
- Density of Aluminum = 171 lb/ft³
- Specific gravity of aluminum =
 Density of aluminum / Density of water =
 (171 lb/ft³)/(62.4 lb/ft³) = 2.74
- Specific gravity is unitless

SIXTH EDITION

GAS LAWS

- General Law of Perfect Gases Relates pressure, volume and temperature
- Boyle's Law Relates pressure and volume
- Charles' Law Relates volume and temperature
- Dalton's Law Relates pressures of gases in a mixture
- Always use absolute pressures and temperatures when working with gas laws

SIXTH EDITION

BOYLE'S LAW

$$P_1 \times V_1 = P_2 \times V_2$$

Where P_1 = Initial Pressure

 P_2 = Final Pressure

 T_1 = Initial Temperature

 T_2 = Final Temperature

 V_1 = Initial Volume

 V_2 = Final Volume

SIXTH EDITION

Boyle's Law

Volume = 30 in^3

Pressure = 40 psia

Volume = 24 in^3

Pressure = 50 psia

As the volume decreases, the gas pressure increases

SIXTH EDITION

CHARLES' LAW

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

If $V_1 = 2000 \text{ ft}^3$, $T_1 = 535 \text{R}$ and $T_2 = 590 \text{R}$, we get:

$$V_2 = (V_1 \times T_2) / T_1 = (2000 \text{ ft}^3 \times 590 \text{ R}) / 535 \text{ R}$$

$$V_2 = 1,180,000 / 535 = 2205.6 \text{ ft}^3$$

SIXTH EDITION

Dalton's Law

$$P = 30 \text{ psig}$$

$$P = 70 \text{ psig}$$

$$P = 40 \text{ psig}$$

Total pressure of a gaseous mixture is the sum of the individual pressures

SIXTH EDITION

ENERGY

- Electrical energy drives motors and pumps in air conditioning systems
- Heat energy provides comfort heating and flows from a warmer substance to a cooler substance
- Energy cannot be created or destroyed, but can be converted from one type to another
- Electrical energy purchased by the kWh, fuel oil by the gallon, natural gas by the cubic foot

SIXTH EDITION

WORK

- Work = Force x Distance
- Force is given in pounds, distance in feet
- The units of work are foot-pounds, ft-lbs

Example: How much work is done to move a 150-pound object 100 feet?

Work = Force x Distance = 150 pounds x 100 feet

Work = $150 \times 100 = 15,000 \text{ ft-lbs}$

SIXTH EDITION

POWER

- The rate at which work is done
- Work per unit time, ft-lbs/min
- Rated in horsepower
- 1 hp = 33,000 ft-lbs/min
- Electrical power measured in watts
- 1 hp = 746 watts
- 1 watt = 3.413 btu
- 1 kw = 3,413 btu

SIXTH EDITION

UNIT SUMMARY

- Matter can be in the form of solids, liquids and gases
- Specific gravity compares the density of substances
- Gas laws relate pressure, volume and temperature
- Electrical and heat energy are common in the industry
- Work is defined as FORCE times DISTANCE
- Power = Work per unit time (Horsepower)
- 1 Horsepower = 746 watts
- 1 Watt = 3.413 Btu

