Evaluate each logarithm:

1.
$$\log_5 125 = x$$

2.
$$\log_3 1 = x$$

Write each equation in log form:

3.
$$4^{-3} = 0.15625$$

4.
$$6^4 = 1296$$

Write each log in exponential form:

5.
$$\log_4 64 = 3$$

6.
$$\log_6 216 = 3$$

Condense each to make a single log:

7.
$$\log(2x - 3) = 43\log 9 - 2\log 3$$

8.
$$\frac{1}{4}(\log_3 a + \log_3 b) - 3\log_3 c$$

Expand each log:

$$9. \log \frac{3x^3y}{4z^2}$$

10.
$$\log_3 (2xyz)^4$$

11.
$$\log \frac{3x}{\sqrt[4]{z}}$$

Evaluate each expression:

12.
$$\log 8 + 3\log 5 = x$$

13.
$$4\log_3 2 - 2\log_3 4 = x$$

Simplify the expression:

14.
$$\ln e^{-3}$$

Use the properties of logarithms to (a) rewrite the expressions of $log_{12}2$ and $log_{12}7$; then (b) use $log_{12}2 = 0.2789$ and $log_{12}7 = 0.7831$ to evaluate the following expressions

16.
$$\log_{12}(7/2)$$

Find the inverse:

18.
$$y = \log_3 x$$

Solve each equation:

19.
$$\log_3 x = 4$$

20.
$$\log_4(2x+7) - 3\log_4 2 = 3$$

21.
$$81^{2x} = 3^{x+1}$$

22.
$$\log(2x - 3) = 4$$

Melissa has \$3500 to put in a bank account that yields 3.2% interest. How much money will she have after 4 years if the account compounds interest:

Compound interest:
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Compounded continuously: $A = Pe^{rt}$

25. Continuously?

Bonus:

Graph $y = \log_3 x$. State the domain and range.

Domain:______Range:_____