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Rational Numbers & Keal Num Bevg

A rational number, in mathematics, is one which can be
represented by a fraction, the ratio of two integers (the
one which does the dividing, the denominator, cannot be

i

sroblem that there were equations of the form a/b =7
with no solutions. It i usual to write rational numbers 'in
their lowest terms’, meaning that the two numbers in the
fraction cannot have any integers which divide both of
them., One of the problems which most distressed the
Greeks was that there are still equations with no raticnal
number solutions {the exampie they discovered that there
was o rational number whose sguare is 2, which means
that there is no solution of the equation x2 - Z = 0}, This
problem, which the Greeks did not attempt to solve, was
overcome by the introduction of the algebraic nurnbers
{this was not possibie until systematic notation for
poivnomials was introduced).

It may seem to be difficull to think of numbers which are
not rational, but in fact, very few numbers really are. One
of the first controversial results of the set theory of Georg
Cantor {1845 - 1918) was that the number of rational
numbers was not the same as the number of real
numbers. {This was controversial because mathematicians
feit that any idea that there were different sizes of
infinity was impossible to consider.} Cantor showed that
therational numbers weré colintable (that g ot pas
counted or written in a list} whereas the real numbers
" were not. The proof that the rational numbers were
countable relies on a famous 'diagonalisational argument’,
in which he gave a way in which they could be listed. The
rationals are writien in an infinite square by writing all

i

those with denominator 1 in the top row, as 0/1, 1/1, 2/1

and so on, then all those with denominator 2 on the next
row, and so of. The way to list them is to start at the

top, left-hand corner, to go one to the right (to 1/1), then -

diagonally down and to the left (to 0/2), then down (to
0/3) and then diagonally up and to the right (to 1/2) and
again (to 3/1); then to 4/1 and diagonally down and right
again and so on. Every number will at some point be
included in such a list. SMcl

The real numbers represent almost the final step in the

- various expansions of the numbersystemy from-the. v

integers to the rational numbers to the algebraic numbers
to the real numbers and the complex numbers. The real
numbers form a field, they have an ordering, and they
also have the property of ‘completeness’. This means that
if there is any set X of real numbers such that they have
an upper bound {a number that is bigger than everything
in X}, then they have a least upper bound (an upper bound
which is smaller than any other). For example, suppose X
is the set of numbers whose square is greater than Z. This
has an upper bound {3 is bigger than anything in the set}
and so has a least upper bound, which will be the square
root of 2. The real numbers are {apart from just renaming

the numbers) the only mathematical structure whichisa /

complete ordered fleld.—
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InTinity

fefore the 19th century, the idea of the infinite was + email this page

dismissed by mathematicians. Although they knew that

there were infinite sets, they felt that nothing interesting xreferences

could be said about them. Something was either infinite ‘

or not, and that was all that could be said. 1. Mcleish, Simon, Dr. Sl
. Bloomsbury Guide to

Towards the end of that century, the German Hm,m Thought

mathematician Georg Cantor (1845 - 1918} began to think 2 ;‘f"még m’zbgs .

somewhat about the idea of the infinite in mathematics. Hs;f: fhzugzt e

He tried, for example, o come up with a definition of the 3. Set Theo

concept of the infinite. {Previously, such definitions as ' e
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‘bigger than any number were used, but that is in fact a Human Thought

circular definition, because the set of numbers is infinite, 4 intuitionism
<o that it amounts to a definition of infinite as ‘as big as ’

L .. LT Bloomsbury Guide to
infinite.) He also set out to categorize infinite sets. Human Thought
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One of the first things that Cantor realized wag that some

infinite sets were bigger than others. He defined when

rwo sets were to be of the same size: his definition was
based on the intuitive behaviour of the numbers which ¢ All 46 xreferences
were already familiar. Two sets are 'equinumerous’ {equal
in number) if there is a mapping between them which is a

adjacent entries
bijection, that is, a function where the two non-equal

elements in the first set have non-equal images, and industrial society

where every element in the second set has an element Infant Sexuality

which the function maps to it. For example, the sets 1,2 Inferiority Lomplex

and 5,7 are equinumerous, because the function mapping ®  infinity

1it0 5 and 2 to 7 is & bijection. inflation
information Theory

The smallest infinite set is that of ail the natural Innate ideas

numbers, and any set which is equinumerous with them i3
called countable or enumerabie, because it is possible to
write any such set as an infinite st (as the bijection
between it and the natural numbers effectively gives you
a first element, and a second element, and so on). Many
kinds of numbers are countable, such as the integers and
the rational numbers, while others are not {the way that
the real numbers are shown to be uncountable is in
algebraic numbers). it came as a big shock that there
were such things as uncountable sets; previously it had
seemed that you must be able to list the elements of any

set. The reaction was so strong that many mathematicians
condemned Cantor's results.

The same ideas give a non-circular definition of the
infinite. An infinite set is defined to be one which i3
equinumercus with some subset of itself (other than the
whole thing). For example, the set of natural numbers is
equinumerous with the set of even numbers.

Today, however, the infinite is very much part of
mathematics, and much of the work in set theory in this
century has been to do with the various properties of
infinite sets; see axiom of choice for a discussion of one
of the most important. SMcl

Further reading R. Rucker, Infinity and the Mind.
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This crash course is designed to stand alone. But it also functions as the appendix to my essay,

Infinite Reflections.

A Crash Course in the Mathematics
Of Ixx

Philosophy

Emmg,

Don't be surprised if this is easier than you thought. Set theory requires no al gebra or calculus,
It is much more primitive than those branches of mathematics, and rests on very simple
notions. Moreover, the proofs will be unusually short and uncomplicated.

What will be difficult? Most of the results we will prove depend critically on those that came
before; but 1 cite the needed prior theorems by number to make this kind of back-tracking
easier. The notation may be new, and for many people unfamiliar notation raises the hair on
the back of the neck. But most of the notation may be ignored. I include it mainly so that if
you read further on this subject, you will be equipped. I honestly don't think the compressed
exposition needed for a crash course increases the difficulty —in part because I've been more
long-winded than most mathematicians, and in part because some compression and
conciseness helps keep all the relevant ideas in the head at the same time, which aids
comprehension. Some of the proofs, short and simple as they are, will make you dizzy. But
that's part of the amazing phenomenon to be savored, not a difficulty to lament.

To begin:

Almost a definition. Intuitively, a sef is a collection of elements,
¢ The intuitive notion of a set leads to paradoxes, and there is considerable mathematical
and philosophical disagreement about how best 16 refine the intuitive notion,
Fortunately, none of the disagreements or refinements matters for our purposes here, I
only bring up this complexity so that you'll accept the intuitive notion in place of a
~ refined definition for the purposes of this crash course.
* Notation. When we want to list the members of a set, we use curly brackets. So if set §
- contains elements A, B, and C, then we say S= {A, B, C}.
* The null set is the empty set or the set with no members. Notation: ©. Hence, @ = {}.

Abbreviation. For if and only if T will sometimes write simply iff.

Definition. Set A is a subser of set B iff all the members of A are also members of B,
® Notation. A & B,
¢ It follows from this definition that every set is a subset of itself

Definition. Set A is a proper subset of set B iff all the members of A are also members of B,
but not all the members of B are members of A.

# Notation. A © B, _

¢ It follows from this definition that no set is a proper subset of itself,

Definition. The cardinality of a set is the number of members it contains.
* Notation. The cardinality of set S is [S]. For example, if S = {A, B, C}, then |S}=3.
¢ Hence while S is a set, S| is a2 number. When S is an infinite set, |5] will be an infinite
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Fite Sets”

» We will assume the power set axiom, i.e. that all sets have power sets.

Reminder. The natural numbers are the whole positive numbers (sometimes called the
"counting numbers”), including zero: 0, 1, 2,3 ...
e This is really a definition, but by calling it a "reminder” I'm hoping to get on your good
side. _
e Notation. The set of natural numbers.is designated by IN.
o Notation. The number of natural numbers is designated by Dg. "IX" is the first letter of

the Hebrew alphabet, pronounced Aleph. "N is pronounced Aleph-null or

Aleph-nought. We will justify the zero subscript when we prove that no infinjte set has 2
smaller cardinality than the set of natural numbers (Theorem 6).
» Hencs N, =N|, by definition.

s Now you know how many natural numbers there are: N, But this is not profound. So

Lo wnreiazes

£ar we've only invented a name { numeral) for the number of patural numbers.

Definition. A set is countable iff its cardinality is either finite or equal 10 Nﬁo A setis

denumerable iff its cardinality is exactly Dy, A setis uncountable iff its cardinality is greater
than DN,

s The null set is countable. The finite set, {A, B.C}, is countable. The infinite set, N, is
‘countable and denumerable. Sets with a larger cardinality than M are uncountable.

Definition. A transfinite number oT transfinite cardinal is the cardinality of some infinite set.
e If we use the term “infinite” in a restricted and precise way, then "transfinite” is just a
synonym for it. We could avoid fancy new terms to prevent confusion. However,
#infinite” has many imprecise and non-technical uses —for example, the infinite setting
on a camera's range-finder— so it often helpstousea technical term to avoid

ambiguity.

Reminder. The integers are the natural numbers plus their negative counterparts, ...-3, <2, -1,
0,1,2,3...

+ Notation. The set of integers is designated by Z.

Reminder. The rational numbers are the integers plus the rational fractions (those that can be
expressed as the ratio of two integers).
e Notation. The set of rational numbers is designated by Q.
e For example, 0.75 is a rational fraction because we can express it as the ratio of two
integers, namely, 3/4, Therefore it is g rational number.
o The jrrafional numbers are the fractions +hat are not rational numbers, both positive and
negative. For example, We Can prove that pi (3.14159...) cannot be expressed as the ratio
of two integers. Therefore it is an irrational number.

Reminder. The real numbers are the rational numbers plus the irrational numbers.
e Notation. The set of real mumbers is designated by R.

We started with the natural nurobers, then added infinitely many negative whole numbers 10
get the integers, then added infinitely many rational fractions to get the rationals, and then
added infinitely many irrational fractions to get the reals. it's tempting to conclude that with
each infinite addifion we increased cardinality, or in short:

429701 1048



Denumerable and non-denumerably infinite sets

Introduction to Philosophy Orange Coast College
Dr. David C. Ring

What are the differences between denumerabie and non-denumerably
ipfinite sets?

An infinite set is one that contains an infinite number of elements or
members. This, by definition, is not a finite amount. A finite set is defined as
one where it is possible to put the members or elements in the finite setinto a
onc to one correspondence (1-1) from 1 (the first or lowest natural number)
up to some specific natural number n with each and every member contained
in the finite set.

An infinite set therefore is one where there is no natural number n that
can be used to specify the number of elements contained in the infinite set. By
adding the number one 1o any natural number one produces the next highest
number.

Se, the set of positive whole integers are the set of natural numbers
starting with 1, then 2, then 3, 4, 5,6, 7, ... and so on.

Any set that can be put into one to one correspondence with all of the
natural numbers is said to be a denumerably infinite set. This means, among
other things, that the set is countable using only the natural numbers. Since
every set must be in one to one correspondence with itself the set of natural
numbers is, of course, a denumerably infinite set.

So too the set of all even numbers, {2, 4, 6, 8,10, ...} is denumerable
since this set can be put into 1-1 correspondence with ALL of the natural
numbers. The set of all odd numbers 1,3,5,7,...}isalso a denumerably
infinite set for the same reasons.

When Georg (prounced “Gay-Org”) Cantor was able to PROVE that
the set of real numbers, the decimal numbers such as .333, cannot be put into
1-1 correspondence with the natural (1, 2,3, ...) or rational numbers {(the
fractions), this proved that one infinite set can have more members than
another infinite set. Infinite sets come in different orders of infinity or in
different numerical sizes, even though they are both infinite sets, they do not
have the same number of members. But then some sets must be
non-denumerably infinite since they cannot be put into 1-1 correspondence
with all of the natural numbers.
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Denumberable and Non-Denumerably Infinite Sets 2

How did Cantor prove that the real numbers could not be put into 1-1
correspondence with the natural numbers?

The answer is to suppose that you have succeeded in putting them into a
1-1 correspondence and then prove that this is not possible. Sucha1-1
correspondence could be said to possibly look like this:

1 = .33333333... (with 3's repeating to infinity)

7 = 66666666... (with 6's repeating to infinity)

3 = .1415962... (with randomly different pumbers)
4 = etc.

and so forth.

Imagine now finding a decimal (real) number that cannot possibly be
located anywhere on the list. You can create such 2 number by imagining the
following procedure. We go to the first number in the list in the first decimal
place (in this case it is a 3) and say .5 by adding 2 onto the number 3 in that
same first decimal place. Next we go 10 the second number in the list in the
second decimal place (in this case a 6) and continue on with our number that
we are constructing that cannot possibly be located anywhere in the list and
produce .58 by adding 7 onto the 6 in that second decimal place. We go to the
third number and change the number 1 in the third decimal place by adding 2
onto it to produce our number that cannot be in the list 383 and we do this te

infinity.

The infinitely long decimal number that starts .583 . .. is different from
the first number in the first decimal place. It is different from the second
number in the list in the second decimal place. It is different from the third
decimal number in the third decimal place and so on. Yetit is still a number
greater than zero and less than one that cannot be found on the list.

Since the number we constructed cannot possibly be found in the list
this proves there are more real numbers than there are natural numbers.
Every natural number has been paired up with a proper subset of the real
numbers, but not every real number has been paired with a rational numbers
since the number we have constucted using Cantor’s diagonalization
technique cannot be found on the list given how the number was constructed.
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is that we can leave out some of the members of one list and s#il find a one-to-
one correspondence between the two lists!) In a simitar, but somewhat more
complicated way, we can s¢t up a one-to-one correspondence between the
fractions and the integers. (For this we can adapt one of the ways of
representing peirs of natural numbers, the numerators and denominators, as
single natural numbers; see Chapter 2, p. 43.) Sets that can be put into one-
to-one correspondence with the natural numbers are called countable, so the
countable infinite sets are those with No elements. Wea have now seen that the
integers are countable, and so also are all the fractions.

Are there sets which are not countable? Although we have exiended the
system, in passing from the natural numbers to first the integers and then the
rational nismbers, we have not actually increased the total number of objects
that we have fo work with. We have seen that the number of objects is
actually countable in each case. Perhaps the reader has indeed got the
impression by now that o/l infinite sefs are countable. Not so; for the situation
is very different in passing to -the real numbers. It was one of Cantor’s
remarkable achievements to show that there are actually more real numbers
than rationals. The argument that Cantor used is the ‘diagonal slash’ that was
referred to in Chapter 2 and that Turing adapted in his argument to show that
the halting problem for Turing machines is insoluble. Cantor’s argument, like
Turing’s later one, proceeds by reduciio ad absurdum. Suppose that the result
we are trying to establish is false, i.e. that the set of all real numbers is
countable. Then the real numbers between 0 and 1 are certainly countable,
and we shall have some list providing a one-to-one pairing of all such numbers
with the natural numbers, soch as: ,

Natural numbers Real numbers

0 0.10357627183. . .
0.14329806115. .
0.02166095213. . .
0.430053577715. . .
0.92550489101.
{,59210%43297. . .
0.63667910457.
0.87050074193.
0.04311737804.
(.78635081150,
(0.40916738891. .
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I have marked out the diagonal digits in bold type. These digits are, for this
particular listing,

Mathematics and reality 83

1,4,1,0,0,3,1,4,8,5,1,...

and the diagonal slash procedure is to construct a real number (between 0 and
1) whose decimal expansion (after the decimal point} differs from these digits
in each corresponding place. For definiteness, let us say that the digit is to be
1 whenever the diagonal digit is different from 1 and it is 2 whenever the
diagonal digit is 1. Thus, in this case we get the real number

021211121132, .- .

This real number cannot appear in our listing since it differs from the first
number in the first decimal place (after the decimal point), from the second
:ﬁ.ﬁv.@m in the second place, from the third number in the third place, etc.
This is a contradiction because our list was supposed to contain all real
numbers between { and 1. This contradiction establishes what we are trying to
prove, namely that there is no one-to-one correspondence between the real
numbers and the natural numbers and, accordingly, the number of real
numbers is actually greater than the number of rational numbers and is not
countable,

ﬁmo number of real numbers is the infinite number labelled C. {C stands for
continuum, another name for the system of real numbers.) One Emm_mx %w
45 .¢=m number is not called ¥,, say. In fact the symbol X, stands for the next
infinite number greater than ¥y, and it is a famous unsolved problem to decide

-whether in fact C = X,, the so-called continuum hypothesis.

It may be remarked that the computable numbers, on the other hand, are
oocﬁ.mwmn. To count them we just list, in numerical order, those ﬂmmg
iw@ﬁam which generate real numbers (i.e. which mqamznavﬁg mcgmﬁm?m
Q_mmm. of H& numbers). We may wish to strike from the list any ..H;.Mn:
Emnv:a 4.5”% generates a real number that has alteady appeared earlier mm
the list. Since the Turing machines are countable, it must certainly be the case
&mﬁ the computable real numbers are countable. Why can we not use the
@mmomm.m slash on that list and produce a new computable number which is not
in the list? The answer lies in the fact that we cannot computably decide, in
general, irmz._on or not a Turing machine should actually be in the list m&m 10
do so sawm_n_. in am,anr involve our being able to solve the halting %mow_,aa
Some Turing machines may start to produce the digits of a real number mﬁw
a._nuv get mwco_.m and never again produce another digit (because it ic,ama,ﬁ
stop’). ,ﬁrwﬁ is no computable means of deciding which Turing machines will
get stuck in this way. This is basically the halting problem. Thus, while our
diagonal procedure will produce some real number, that number swE notbea
oo.Emu,:wEm number. In fact, this argument could have been used to show the
existence of non-computable numbers. Turing’s argument to show the
existence of a_m.amnw of problems which cannot be solved algorithmically, as
was recounted in the last chapter, follows precisely this line of reasonin 5%
shall see other applications of the diagonal slash later. o



