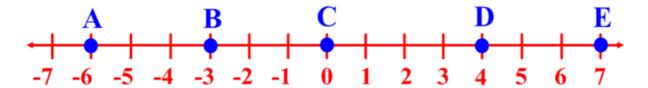
Def. Line Segment

A section of a line that has 2 ENDPOINTS.

The symbol for line segment is —

To name a line segment, you use the 2 endpts. with the symbol for line segment above them.


Betweenness of pts.

Pt. M is between pts. P and Q if P,Q, and M are collinear then PM + MQ = PQ

Measuring a line segment

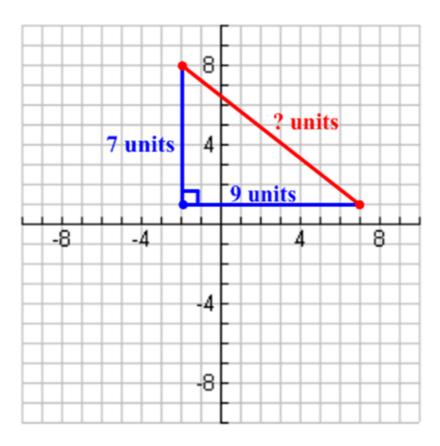
The measure of a line segment is the absolute value of the DIFFERENCE of the coordinates of the endpts.

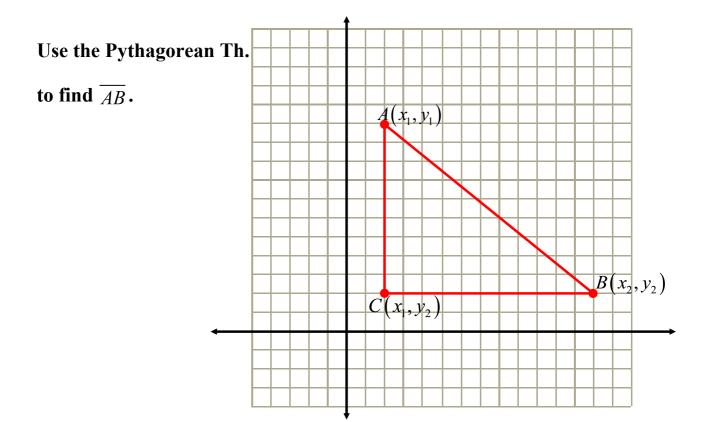
Def. Congruent

Two or more figures that have equal measurement.

The symbol for congruent is \cong

In a picture, "tick" marks are used to indicate ≅


Def. ≅ **Segments**


Two segments are ≅ if and only if they have the same measurements.

The Pythagorean Theorem

In A right triangle, if a and b are the lengths of the legs and c is the length of the hypotenuse, then the following equation is always true:

$$a^2+b^2=c^2$$

The Distance Formula

On the coordinate plane, the distance between any 2 pts. with coordinates (x_1, y_1) and (x_2, y_2) can be found by the following formula:

$$\mathbf{d} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Def. Midpt.

The midpt. of \overline{AB} is the pt. X between A and B such that AX = XB

Midpt. Formulas

1. On a number line, the coordinate of the midpt. of a segment whose endpts. have coordinates *a* and *b* can be found by:

$$\frac{a+b}{2}$$

2. On the coordinate plane, the coordinates of the midpt. of a segment whose endpts. are (x_1, y_1) and (x_2, y_2) are:

$$\left(\frac{\boldsymbol{X}_1+\boldsymbol{X}_2}{2},\frac{\boldsymbol{y}_1+\boldsymbol{y}_2}{2}\right)$$

Def. Segment Bisector

Any segment, line, or plane that intersects a segment at its midpt.

