Post. 2-10 Protractor Post.

∠'s are measured in units called DEGREES

Post. 2.11 The ∠ Addition Post.

If pt. R is in the interior of $\angle PQS$, then $m\angle PQR + m\angle RQS = m\angle PQS$

Th. 2-3 Supplement Th.

If $2 \angle$'s form a linear pair, then they are supplementary

Th. 2-4 Complement Th.

If 2 adj. \angle 's form rt. \angle , then they are complementary.

Th. 2-5

Congruence of \angle 's is reflexive, symmetric, and transitive

Th. 2-6

 \angle 's supp. to the same \angle or to \cong \angle 's are \cong

Th. 2-7

 \angle 's comp. to the same \angle or to \cong \angle 's are \cong

Th. 2-8

Vertical ∠'s are ≅

Th. 2-9

\perp lines intersect to form 4 rt. \angle 's

Th. 2-10

All right \angle 's are \cong

Given: $\angle 1$ and $\angle 2$ are adj. \angle 's, $\angle 1 \cong \angle 3$

Prove: $\angle 2$ and $\angle 3$ are supp. \angle 's

Statements Reasons 3 Delaca are adje's OGiven 21=13

Given: $\overrightarrow{EA} \perp \overrightarrow{EC}$; $\overrightarrow{EB} \perp \overrightarrow{ED}$

Prove: $\angle 1 \cong \angle 3$

