8.3: Zero and Negative Exponents

Goals: *Simplify expressions raised to the zero power

*Rewrite expressions using all positive exponents

Zero Exponents:

NOTICE

PROOF

 $2^5 = 32$

$$5 \cdot 1 = 5$$

 $4 \cdot 1 = 4$

and

 $2^4 = 16$

$$b \cdot 1 = b$$

 $x^3 \cdot 1 = x^3$

 $x^m \cdot x^n = x^{m+n}$

 $2^3 = 8$

 $x^3 \cdot x^? = x^{3+?} = x^3$

 $2^2 = 4$

Because the rule is to add the exponents when you multiply, zero would be the missing exponent

 $2^1 = 2$

 2^0 = ? (Since the pattern is that you keep dividing by 2, the next number would be 1)

1) $a^0 = 1$ $a \neq 0$, a can be negative, positive, fraction, decimal...

2) $a^{-m} = \frac{1}{a^m}$ and $\frac{1}{a^{-m}} = a^m$

2)
$$a^{-m} = \frac{1}{a^m}$$
 and $\frac{1}{a^{-m}} = a^m$

Negative Exponents:

NOTICE

PROOF

$$\frac{a^m}{a^n} = a^{m-n}$$

$$2^1 = 2$$

$$\frac{2^4}{2^5} = 2^{4-5} = 2^{-1}$$

 $2^0 = 1$ (Just learned and proved)

$$2^{-1} = \frac{1}{2} \text{ (Pattern)} = \frac{1}{2^{?}} \frac{1}{2^{1}}$$

$$\frac{2\cdot 2\cdot 2\cdot 2}{2\cdot 2\cdot 2\cdot 2\cdot 2} = = \frac{1}{2^2} \qquad \frac{1}{2^1}$$

$$2^{-2} = \frac{1}{4} \qquad \qquad = \frac{1}{2^{?}} \qquad \frac{1}{2^{2}}$$

Simplify the following expressions. Write your answer using positive exponents.

Ex:
$$\left(\frac{2}{3}\right)^0$$

Ex: $(-1)^0$

1

1

Ex:
$$x^{-2}$$
 $\frac{1}{x^2}$

Ex:
$$4^{-3}$$
 $\frac{1}{4^3} = \frac{1}{64}$

Ex:
$$(-8)^{-2}$$

Ex:
$$\frac{1}{y^{-3}}$$

 $\frac{1}{\frac{1}{y^3}} = 1 \div \frac{1}{y^3} = \frac{1}{1} \cdot \frac{y^3}{1} = y^3$

Ex:
$$\frac{1}{2^{-3}}$$

8

Putting it all together.

Ex:
$$\frac{7^3}{7^5}$$

Ex:
$$(2xy^{-5})^3$$
 $\frac{8x^3}{y^{15}}$

Ex:
$$(3x^{-2}y^2)^3$$

$$\frac{27y^6}{x^6}$$

Ex:
$$\frac{5^{-1}}{5^2}$$

Some more complicated ones:

Ex:
$$\left(\frac{2}{3}\right)^{-2}$$

Ex:
$$\frac{(2x)^{-2}y^5}{-4x^2y^2}$$

Ex:
$$\frac{4x^{-2}y^4}{8xy^6}$$

$$-\frac{y^3}{16x^4}$$

$$\frac{1}{2x^3y^2}$$