4.2: Graph Linear Equations

Goals: *Use a table to graph a linear equation

*Graph horizontal and vertical lines

*Choose appropriate *x* values

<u>Linear equation</u>: Any equation whose graph is a straight line. Linear equations can be written in the form Ax + By = C, which is called "Standard Form." In this form, both A and B cannot be 0.

Solution: *Any ordered pair (x, y) that makes the equation true when substituted.

*Any point on the line (Since a line continues on forever in both directions, and there are infinite points on a line, then a linear equation has infinite solutions.

Ex: Which ordered pair is a solution to: 3x - y = 7; (3, 4) or (1, -4)? Explain.

If you plug in (3, 4) then 3 replaces x and 4 replaces y. You would get:

$$3(3) - 4 = 7$$

$$9 - 4 = 7$$

$$5 = 7$$

So no, (3, 4) is **not** a solution. It does not work when substituted in.

If you plug in (1, -4), then 1 replaces x and -4 replaces y. You would get:

$$3(1) - (-4) = 7$$

$$3 - (-4) = 7$$

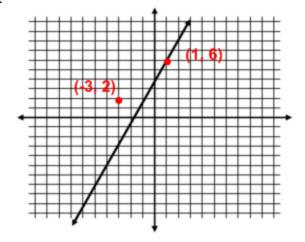
$$3 + 4 = 7$$

$$7 = 7$$

So yes, (1, -4) is a solution. When you substitute it in, it works.

Ex: Tell whether $\left(4, -\frac{1}{2}\right)$ is a solution to x + 2y = 5. Why or why not.

$$4+2\left(-\frac{1}{2}\right)=5$$


$$4 + (-1) = 5$$

3 = 5 No, it is not a solution.

Ex: Are the following points solutions to the linear equation represented by the line graphed?

a) (1, 6) Yes, it is a point on the line

b) (-3, 2) No, it is not a point on the line

Graph a linear equation by making a table:

**MAKE SURE EQUATION IS IN ___FUNCTION___ FORM!

1. Rewrite the equation so it is in function form, which means to isolate ___y___

Ex:
$$-2x + y = -3$$

 $+2x$ $+2x$
 $y = -3 + 2x$

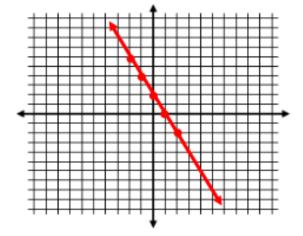
2. Choose 5 appropriate values for x. Typically these values are: -2, -1, 0, 1, 2

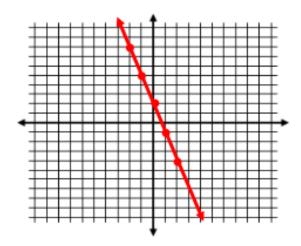
*You should not choose these five values in two cases:

1. If there is a restriction on the domain. For example, if it is says $x \ge 0$, then you must choose only positive values, or if dealing with time, time cannot be negative

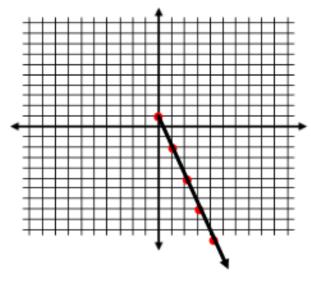
2. If after putting the equation in function form, the coefficient of x is a fraction, then it makes the most sense to choose multiples of the denominator to avoid fractions.

3. Plug your 5 values into the function for x, find out what y is for each to complete your table.


4. Graph the ordered pairs you now have from your table.


Ex: Graph y = 2 - 2x

x	-2	-1	0	1	2
у	6	4	2	0	-2

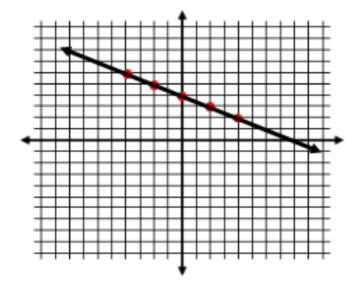

Ex:	Graph	y + 3x = 2
		y = 2 - 3x

x	-2	-1	0	1	2
у	8	5	2	-1	-4

Ex: Graph y = -3x + 1 with a domain of $x \ge 0$ *which values can you <u>not</u> choose for x? Why? Cannot choose negative numbers because x must be greater than or equal to 0

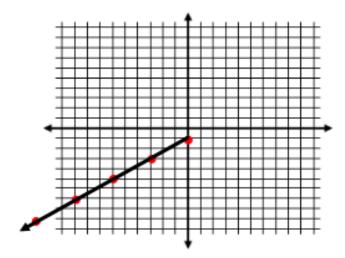
x	0	1	2	3	4
у	1	-2	-5	-8	-11

*Identify the range...


Range: $y \le 1$

Notice on the graph there is only an arrow on one end because the line cannot extend into the second quadrant. There, *x* would be negative.

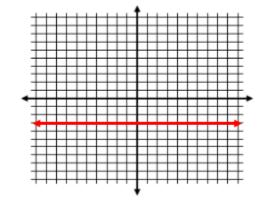
Ex: Graph
$$y = -\frac{1}{2}x + 4$$


**which values should you pick for x? Why?

You should choose multiples of 2 to cancel out fractions.

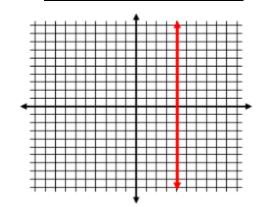
Ī	x	-4	-2	0	2	4
	у	6	5	4	3	2

Ex: Graph $y = \frac{2}{3}x - 1$ with a domain of $x \le 0$ then identify the range.



x	-12	-9	-6	-3	0
у	-9	-7	-5	-3	-1

Range: ___ $y \le -1$ _____


Ex: Graph y = -3

x	-2	-1	0	1	2
у	-3	-3	-3	-3	-3

Ex: Graph x = 4

x	4	4	4	4	4
у	-2	-1	0	1	2

Ex: The distance, d, in miles, that a runner travels is given by the function d = 6t where t is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for t.

t	0	0.5	1	1.5
d	0	3	6	9

Domain: $t \ge 0$ Range: $d \ge 0$

Ex: Suppose the same runner decides he wants to run 12 miles. Set up a new table with at least 3 values and identify the new domain and range.

t	0	1	2
d	0	6	12

Domain: $0 \le t \le 2$ Range: $0 \le d \le 12$

Ex: For gas that costs \$2 per gallon, the equation C = 2g gives the cost, C, in dollars for g gallons of gas. You plan to pump \$10 worth of gas. Set up a table and identify the domain and range.

g	0	1	2	3	4	5
C	0	2	4	6	8	10

Domain: $0 \le g \le 5$ Range: $0 \le C \le 10$