Midterm Review Warm Up 4

Section 4.2 – Graphing Lines by Making a Table

Ex: Graph $y = \frac{2}{3}x - 1$ with a domain of $x \ge 0$ by making a table. (Be sure to choose appropriate values for x) *MUST choose numbers 0 or greater (the domain is restricted) and SHOULD choose numbers that are multiples of 3 because the coefficient of x is a fraction with a denominator of 3.

x	y
0	-1
3	1
6	3
9	5
12	7

Section 4.3 – Graphing Lines by Using x and y Intercepts

Ex: Find the x and y intercepts of the equation: 4x - 6y = -18

*remember to find intercepts by changing the opposite Coordinate to 0 and solving.

x-intercept:

$$4x - 6(0) = -18$$

$$4x = -18$$

$$4$$

$$x = -4.5$$

y-intercept:

$$4(0) - 6y = -18$$

 $-6y = -18$
 $-6y = -18$
 $-6y = -18$
 $-6y = -18$
 $-6y = -18$

Ex: Graph the equation -2y - 4x = 16 using x and y intercepts.

Section 4.4 – Finding Slope and Rate of Change

Ex: Find the slope of the line that passes through the points (-2, 8) and (-2, 12)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{12-8}{-2--2} = \frac{4}{0}$$
 = undefined.

Ex: Find the slope of the line graphed.

Section 4.5 – Graphing Lines Using Slope-Intercept Form

Ex: Write the following equation in slope-intercept form and identify the slope and *y*-intercept:

$$2x - 3y = 12$$

$$-2x \qquad -2x$$

$$-3y = 12 - 2x$$

$$-3 \qquad -3$$

$$y = -4 + \frac{2}{3}x$$

Slope: -4 y-intercept: $\frac{2}{3}$

Ex: Graph the following equation using slope-intercept form:

Section 4.6 – Direct Variation

Ex: Does the following equation represent direct variation? Why or why not?

$$3x + y - 2 = -2$$

$$-3x -3x$$

$$y - 2 = -2 - 3x$$

$$y - 2 = -2 - 3x$$

$$+2 + 2$$

$$y = 3x$$
Yes, it can be written in the form $y = ax$ (the y-intercept is 0)

Ex: If y varies directly with x and y = 12 when x = 2, find the constant of variation <u>and</u> write the direct variation equation representing the situation.

$$y = ax$$

$$12 = a(2)$$

$$6 = a$$

$$y = 6x$$

Section 4.7 – Function Notation

Ex: Evaluate the function f(x) = -2x + 5 when x = 4

$$f(4) = -2(4) + 5$$

$$f(4) = -8 + 5$$

$$f(4) = -3$$

Ex: For the function f(x) = 4x - 2, find the value of x when f(x) = 10

$$10 = 4x - 2$$
$$12 = 4x$$
$$3 = x$$