Ex: 0.000486 = _____

8.4: Use Scientific Notation Goals: *Read and Write numbers in scientific notation		
*Order numbers written in scientific notation	•	
*Multiply and Divide numbers written in scient	tific notation	
Standard Form:		
Scientific Notation:		
If the power of ten is positive, it tells you:		
If the power of ten is negative, it tells you:		
Write the following numbers in scientific notation:	T 0.0000774	V 10 ²
Ex: $42,590,000 = $ X $10^{?}$	Ex: 0.0000574 =	X 10°
Ex: 539,000 =	Ex: 267,500,000 =	

Write the following numbers in standard form:

Ex:
$$2.0075 \times 10^6 =$$

Ex:
$$1.685 \times 10^{-4} =$$

Ex:
$$7.0235 \times 10^5 =$$

Ex:
$$3.096 \times 10^{-7} =$$

Ex:
$$4.5 \times 10^{-4} =$$

Order numbers in scientific notation:

Ex: Order 103,400,000; 7.8×10^8 ; 80,760,000 from least to greatest.

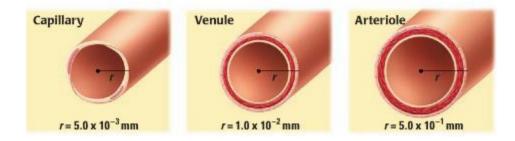
Ex: Order 93,000,000; 9.2×10^6 ; 9,028,000 from least to greatest.

Multiply or divide numbers in scientific notation:

Ex:
$$(8.5 \times 10^2)(1.7 \times 10^6)$$

Ex:
$$(1.5 \times 10^{-3})^2$$

Ex:
$$(5.7 \times 10^3)(2.6 \times 10^4)$$


Ex:
$$(2.4 \times 10^{-4})^2$$

Ex:
$$\frac{1.2\times10^4}{1.6\times10^{-3}}$$

Ex:
$$\frac{4.5\times10^5}{1.5\times10^{-2}}$$

Ex:
$$\frac{2.4 \times 10^5}{2.5 \times 10^{-4}}$$

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

- a) Let r_1 be the radius of a venule, and let r_2 be the radius of a capillary. Find the ratio of r_1 to r_2 . What does the ratio tell you?
- b) Let A_1 be the cross-sectional area of a venule and A_2 be the cross-sectional area of a capillary. Find the ration of A_1 to A_2 . What does the ratio tell you?