# 9.4: Solve Polynomial Equations in Factored Form

Goals: \*Understand and find "roots" of polynomial equations

\*Factor polynomials by finding the GCF \*Solve polynomial equations by factoring

**Roots:** 

### **Zero-product property:**

#### Solve using the zero-product property:

**Ex:** 
$$(x + 2)(x + 4) = 0$$

### **Solve:**

**Ex:** 
$$(x-5)(x-1)=0$$

### **Ex:** (x+3)(x-5) = 0

# **Factor by finding the Greatest Common Factor:**

Ex: 12x + 42y What do both terms have in common that you can divide by?

Look for the **greatest** factor they have in common.

When you factor by using the GCF you are essentially:

Which means you could check your answer by:

**Ex:**  $4x^4 + 24x^3$  **Ex:** 14m + 35n **Ex:** 8x + 12y

**Ex:** 
$$14y^2 + 21y$$

**Ex:** 
$$6x^2y + 9xy^2$$

**Ex:** 
$$4t^2 - 2t$$

### **Solve by factoring first:**

**Ex:** 
$$2x^2 + 8x = 0$$

**Ex:** 
$$3x^2 + 18x = 0$$

**Ex:** 
$$a^2 + 5a = 0$$

**Ex:** 
$$3s^2 - 9s = 0$$

# **Solve by factoring:**

**Ex:** 
$$6n^2 = 15n$$

**Ex:** 
$$4x^2 = 2x$$

**Ex:** 
$$4s^2 = 14s$$

### **Vertical Motion Model:**



**Ex:** A startled armadillo jumps straight into the air with an initial velocity of 14 ft/s. After how many seconds does it land back on the ground?

**Ex:** A dolphin jumped out of the water with an initial velocity of 32 ft/s. How many seconds does it take for the dolphin to re-enter the water?

**Ex:** Two rectangular rooms in a building's floor plan have different dimensions but the same area. The dimensions (in meters) are shown. What is the value of w?

